Hyperbolic Conservation Laws, Integral Balance Laws and Regularity of Fluxes

Matania Ben-Artzi, Jiequan Li

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (4) : 2048-2063. DOI: 10.1007/s42967-023-00298-2
Original Paper

Hyperbolic Conservation Laws, Integral Balance Laws and Regularity of Fluxes

Author information +
History +

Abstract

Hyperbolic conservation laws arise in the context of continuum physics, and are mathematically presented in differential form and understood in the distributional (weak) sense. The formal application of the Gauss-Green theorem results in integral balance laws, in which the concept of flux plays a central role. This paper addresses the spacetime viewpoint of the flux regularity, providing a rigorous treatment of integral balance laws. The established Lipschitz regularity of fluxes (over time intervals) leads to a consistent flux approximation. Thus, fully discrete finite volume schemes of high order may be consistently justified with reference to the spacetime integral balance laws.

Keywords

Balance laws / Hyperbolic conservation laws / Finite volume approximations / Flux regularity / Consistency

Cite this article

Download citation ▾
Matania Ben-Artzi, Jiequan Li. Hyperbolic Conservation Laws, Integral Balance Laws and Regularity of Fluxes. Communications on Applied Mathematics and Computation, 2023, 6(4): 2048‒2063 https://doi.org/10.1007/s42967-023-00298-2

References

[1.]
Ben-Artzi M, Falcovitz J. A second-order Godunov-type scheme for compressible fluid dynamics. J. Comput. Phys., 1984, 55: 1-32,
CrossRef Google scholar
[2.]
Ben-Artzi M, Falcovitz J. . Generalized Riemann Problems in Computational Fluid Dynamics, 2003 Cambridge Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press,
CrossRef Google scholar
[3.]
Ben-Artzi M, Li JQ. Hyperbolic conservation laws: Riemann invariants and the generalized Riemann problem. Numerische Mathematik, 2007, 106: 369-425,
CrossRef Google scholar
[4.]
Ben-Artzi M, Li JQ. Consistency of finite volume approximations to nonlinear hyperbolic balance laws. Math. Comput., 2021, 90: 141-169,
CrossRef Google scholar
[5.]
Ben-Artzi M, Li JQ. Regularity of fluxes in nonlinear hyperbolic balance laws. Commun. Appl. Math. Comput., 2023, 5: 1289-1298,
CrossRef Google scholar
[6.]
Ben-Artzi M, Li JQ, Warnecke G. A direct Eulerian GRP scheme for compressible fluid flows. J. Comput. Phys., 2006, 218: 19-43,
CrossRef Google scholar
[7.]
Chen GQ, Comi GE, Torres M. Cauchy fluxes and Gauss-Green formulas for divergence measure fields over general open sets. Arch. Rat. Mech. Anal., 2019, 233: 87-166,
CrossRef Google scholar
[8.]
Chen GQ, Frid H. Divergence-measure fields and hyperbolic conservation laws. Arch. Rat. Mech. Anal., 1999, 147: 89-118,
CrossRef Google scholar
[9.]
Chen GQ, Torres M, Ziemer W. Gauss-Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws. Commun. Pure Appl. Math., 2009, 62: 242-304,
CrossRef Google scholar
[10.]
Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften, 4th edn. Springer, Heidelberg (2016)
[11.]
Evans LC. . Partial Differential Equations, 1998 Providence American Mathematical Society
[12.]
Federer H. . Geometric Measure Theory, 1969 Heidelberg Springer
[13.]
Godlewski, E., Raviart, P.A.: Hyperbolic Systems of Conservation Laws. Ellipses (1991)
[14.]
Godunov SK. Finite difference methods for numerical computations of discontinuous solutions of equations of fluid dynamics. Mat. Sb., 1959, 47: 271-295
[15.]
Gurtin, M.E., Martins, L.C.: Cauchy’s theorem in classical physics. Arch. Rat. Mech. Anal. 60, 305–324 (1976)
[16.]
Lax P, Wendroff B. Systems of conservation laws. Commun. Pure Appl. Math., 1960, 13: 217-237,
CrossRef Google scholar
[17.]
Lei, X., Li, J.: Transversal effects of high order numerical schemes for compressible fluid flows. Appl. Math. Mech. (Engl. Edn.) 40, 343–354 (2019)
[18.]
Li J, Du Z. A two-stage fourth order time-accurate discretization for Lax-Wendroff type flow solvers, I. Hyperbolic conservation laws. SIAM J. Sci. Comput., 2016, 38: 3045-3069,
CrossRef Google scholar
[19.]
Li J, Wang Y. Thermodynamical effects and high resolution methods for compressible fluid flows. J. Comput. Phys., 2017, 343: 340-354,
CrossRef Google scholar
[20.]
Qian J, Li J, Wang S. The generalized Riemann problems for compressible fluid flows: towards high order. J. Comput. Phys., 2014, 259: 358-389,
CrossRef Google scholar
[21.]
Sheng W, Zhang Q, Zheng Y. A direct Eulerian GRP scheme for a blood flow model in arteries. SIAM J. Sci. Comput., 2021, 43(3): A1975-A1996,
CrossRef Google scholar
[22.]
Šilhavý M. The existence of the flux vector and the divergence theorem for general Cauchy fluxes. Arch. Rat. Mech. Anal., 1985, 90: 195-212,
CrossRef Google scholar
[23.]
Šilhavý M. Divergence-measure fields and Cauchy’s stress theorem. Rend. Sem. Mat. Padova, 2005, 113: 15-45
[24.]
Spivak, M.: A Comprehensaive Introduction to Differential Geometry, vol. I. Publish or Perish, Inc., Houston, Texas (1979)
[25.]
Toro E. . Riemann Solvers and Numerical Methods for Fluid Dynamics: a Practical Introduction, 2009 3 Berlin Springer,
CrossRef Google scholar
[26.]
Wu K, Tang H. A direct Eulerian GRP scheme for spherically symmetric general relativistic hydrodynamics. SIAM J. Sci. Comput., 2016, 38(3): B458-B489,
CrossRef Google scholar
Funding
National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(91852207); National Key Scientific Instrument and Equipment Development Projects of China(GJXM92579); Chinesisch-Deutsche Zentrum fur Wissenschaftsforderung(GZ1465)

Accesses

Citations

Detail

Sections
Recommended

/