A New Efficient Explicit Deferred Correction Framework: Analysis and Applications to Hyperbolic PDEs and Adaptivity

Lorenzo Micalizzi, Davide Torlo

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (3) : 1629-1664. DOI: 10.1007/s42967-023-00294-6
Original Paper

A New Efficient Explicit Deferred Correction Framework: Analysis and Applications to Hyperbolic PDEs and Adaptivity

Author information +
History +

Abstract

The deferred correction (DeC) is an iterative procedure, characterized by increasing the accuracy at each iteration, which can be used to design numerical methods for systems of ODEs. The main advantage of such framework is the automatic way of getting arbitrarily high order methods, which can be put in the Runge-Kutta (RK) form. The drawback is the larger computational cost with respect to the most used RK methods. To reduce such cost, in an explicit setting, we propose an efficient modification: we introduce interpolation processes between the DeC iterations, decreasing the computational cost associated to the low order ones. We provide the Butcher tableaux of the new modified methods and we study their stability, showing that in some cases the computational advantage does not affect the stability. The flexibility of the novel modification allows nontrivial applications to PDEs and construction of adaptive methods. The good performances of the introduced methods are broadly tested on several benchmarks both in ODE and PDE contexts.

Keywords

Efficient deferred correction (DeC) / Arbitrary high order / Stability / Adaptive methods / Hyperbolic PDEs

Cite this article

Download citation ▾
Lorenzo Micalizzi, Davide Torlo. A New Efficient Explicit Deferred Correction Framework: Analysis and Applications to Hyperbolic PDEs and Adaptivity. Communications on Applied Mathematics and Computation, 2023, 6(3): 1629‒1664 https://doi.org/10.1007/s42967-023-00294-6

References

[1.]
Abgrall R. Residual distribution schemes: current status and future trends. Comput. Fluids, 2006, 35(7): 641-669,
CrossRef Google scholar
[2.]
Abgrall R. High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices. J. Sci. Comput., 2017, 73(2–3): 461-494,
CrossRef Google scholar
[3.]
Abgrall, R., Ivanova, K.: Staggered residual distribution scheme for compressible flow. arXiv:2111.10647 (2022)
[4.]
Abgrall R, Bacigaluppi P, Tokareva S. High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics. Comput. Math. Appl., 2019, 78(2): 274-297,
CrossRef Google scholar
[5.]
Abgrall R, Le Mélédo E, Öffner P, Torlo D. Relaxation deferred correction methods and their applications to residual distribution schemes. SMAI J. Comput. Math., 2022, 8: 125-160,
CrossRef Google scholar
[6.]
Abgrall R, Torlo D. High order asymptotic preserving deferred correction implicit-explicit schemes for kinetic models. SIAM J. Sci. Comput., 2020, 42(3): 816-845,
CrossRef Google scholar
[7.]
Bacigaluppi P, Abgrall R, Tokareva S. “A posteriori” limited high order and robust schemes for transient simulations of fluid flows in gas dynamics. J. Comput. Phys., 2023, 476: 111898,
CrossRef Google scholar
[8.]
Boscarino S, Qiu J-M. Error estimates of the integral deferred correction method for stiff problems. ESAIM Math. Model. Numer. Anal., 2016, 50(4): 1137-1166,
CrossRef Google scholar
[9.]
Boscarino S, Qiu J-M, Russo G. Implicit-explicit integral deferred correction methods for stiff problems. SIAM J. Sci. Comput., 2018, 40(2): 787-816,
CrossRef Google scholar
[10.]
Butcher JC. . Numerical Methods for Ordinary Differential Equations, 2016 Auckland Wiley,
CrossRef Google scholar
[11.]
Cheli F, Diana G. . Advanced Dynamics of Mechanical Systems, 2015 Cham Springer,
CrossRef Google scholar
[12.]
Christlieb A, Ong B, Qiu J-M. Comments on high-order integrators embedded within integral deferred correction methods. Commun. Appl. Math. Comput. Sci., 2009, 4(1): 27-56,
CrossRef Google scholar
[13.]
Christlieb A, Ong B, Qiu J-M. Integral deferred correction methods constructed with high order Runge–Kutta integrators. Math. Comput., 2010, 79(270): 761-783,
CrossRef Google scholar
[14.]
Ciallella M, Micalizzi L, Öffner P, Torlo D. An arbitrary high order and positivity preserving method for the shallow water equations. Comput. Fluids, 2022, 247: 105630,
CrossRef Google scholar
[15.]
Cohen G, Joly P, Roberts JE, Tordjman N. Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal., 2001, 38(6): 2047-2078,
CrossRef Google scholar
[16.]
Dutt A, Greengard L, Rokhlin V. Spectral deferred correction methods for ordinary differential equations. BIT, 2000, 40(2): 241-266,
CrossRef Google scholar
[17.]
Fox, L., Goodwin, E.: Some new methods for the numerical integration of ordinary differential equations. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 45, pp. 373–388. Cambridge University Press, Cambridge (1949)
[18.]
Han Veiga M, Öffner P, Torlo D. DeC and ADER: similarities, differences and a unified framework. J. Sci. Comput., 2021, 87(1): 1-35,
CrossRef Google scholar
[19.]
Huang J, Jia J, Minion M. Accelerating the convergence of spectral deferred correction methods. J. Comput. Phys., 2006, 214(2): 633-656,
CrossRef Google scholar
[20.]
Jund S, Salmon S. Arbitrary high-order finite element schemes and high-order mass lumping. Int. J. Appl. Math. Comput. Sci., 2007, 17(3): 375-393,
CrossRef Google scholar
[21.]
Ketcheson D, Bin Waheed U. A comparison of high-order explicit Runge–Kutta, extrapolation, and deferred correction methods in serial and parallel. Commun. Appl. Math. Comput. Sci., 2014, 9(2): 175-200,
CrossRef Google scholar
[22.]
Layton AT, Minion ML. Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics. J. Comput. Phys., 2004, 194(2): 697-715,
CrossRef Google scholar
[23.]
Layton AT, Minion ML. Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations. BIT Numer. Math., 2005, 45(2): 341-373,
CrossRef Google scholar
[24.]
Liu Y, Shu C-W, Zhang M. Strong stability preserving property of the deferred correction time discretization. J. Comput. Math., 2008, 26(5): 633-656
[25.]
Micalizzi, L., Torlo, D., Boscheri, W.: Efficient iterative arbitrary high order methods: an adaptive bridge between low and high order. arXiv:2212.07783 (2022)
[26.]
Michel S, Torlo D, Ricchiuto M, Abgrall R. Spectral analysis of continuous FEM for hyperbolic PDEs: influence of approximation, stabilization, and time-stepping. J. Sci. Comput., 2021, 89(2): 1-41,
CrossRef Google scholar
[27.]
Michel S, Torlo D, Ricchiuto M, Abgrall R. Spectral analysis of high order continuous fem for hyperbolic PDEs on triangular meshes: influence of approximation, stabilization, and time-stepping. J. Sci. Comput., 2023, 94(3): 49,
CrossRef Google scholar
[28.]
Minion ML. Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci., 2003, 1(3): 471-500,
CrossRef Google scholar
[29.]
Minion ML. Semi-implicit projection methods for incompressible flow based on spectral deferred corrections. Appl. Numer Math., 2004, 48(3–4): 369-387,
CrossRef Google scholar
[30.]
Minion M. A hybrid parareal spectral deferred corrections method. Commun. Appl. Math. Comput. Sci., 2011, 5(2): 265-301,
CrossRef Google scholar
[31.]
Öffner P, Torlo D. Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes. Appl. Numer. Math., 2020, 153: 15-34,
CrossRef Google scholar
[32.]
Pasquetti R, Rapetti F. Cubature points based triangular spectral elements: A accuracy study. J. Math. Stud., 2018, 51(1): 15-25,
CrossRef Google scholar
[33.]
Ricchiuto M, Abgrall R. Explicit Runge–Kutta residual distribution schemes for time dependent problems: second order case. J. Comput. Phys., 2010, 229(16): 5653-5691,
CrossRef Google scholar
[34.]
Ricchiuto, M., Torlo, D.: Analytical travelling vortex solutions of hyperbolic equations for validating very high order schemes. arXiv:2109.10183 (2021)
[35.]
Speck R, Ruprecht D, Emmett M, Minion M, Bolten M, Krause R. A multi-level spectral deferred correction method. BIT Numer. Math., 2015, 55(3): 843-867,
CrossRef Google scholar
[36.]
Torlo, D.: Hyperbolic problems: high order methods and model order reduction. PhD thesis, University Zurich (2020)
[37.]
Wanner G, Hairer E. . Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 1996 Berlin Springer
Funding
Schweizerischer Nationalfonds zur Forderung der Wissenschaftlichen Forschung(200020_204917); Scuola Internazionale Superiore di Studi Avanzati; University of Zurich

Accesses

Citations

Detail

Sections
Recommended

/