Meta-Auto-Decoder: a Meta-Learning-Based Reduced Order Model for Solving Parametric Partial Differential Equations

Zhanhong Ye, Xiang Huang, Hongsheng Liu, Bin Dong

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (2) : 1096-1130. DOI: 10.1007/s42967-023-00293-7
Original Paper

Meta-Auto-Decoder: a Meta-Learning-Based Reduced Order Model for Solving Parametric Partial Differential Equations

Author information +
History +

Abstract

Many important problems in science and engineering require solving the so-called parametric partial differential equations (PDEs), i.e., PDEs with different physical parameters, boundary conditions, shapes of computational domains, etc. Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the offline stage. These methods often need a predefined mesh as well as a series of precomputed solution snapshots, and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz. Utilizing the nonlinear representation of neural networks (NNs), we propose the Meta-Auto-Decoder (MAD) to construct a nonlinear trial manifold, whose best possible performance is measured theoretically by the decoder width. Based on the meta-learning concept, the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage. Fast adaptation to new (possibly heterogeneous) PDE parameters is enabled by searching on this trial manifold, and optionally fine-tuning the trial manifold at the same time. Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.

Keywords

Parametric partial differential equations (PDEs) / Meta-learning / Reduced order modeling / Neural networks (NNs) / Auto-decoder

Cite this article

Download citation ▾
Zhanhong Ye, Xiang Huang, Hongsheng Liu, Bin Dong. Meta-Auto-Decoder: a Meta-Learning-Based Reduced Order Model for Solving Parametric Partial Differential Equations. Communications on Applied Mathematics and Computation, 2023, 6(2): 1096‒1130 https://doi.org/10.1007/s42967-023-00293-7

References

[1.]
Antoniou, A., Edwards, H., Storkey, A.: How to train your MAML. In: Seventh International Conference on Learning Representations (2019)
[2.]
Baydin AG, Pearlmutter BA, Radul AA, Siskind JM. Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res., 2018, 18: 1-43
[3.]
Benner P, Ohlberger M, Cohen A, Willcox K. . Model Reduction and Approximation, 2017 Philadelphia, PA Society for Industrial and Applied Mathematics,
CrossRef Google scholar
[4.]
Bhattacharya, K., Hosseini, B., Kovachki, N.B., Stuart, A.M.: Model reduction and neural networks for parametric PDEs. arXiv:2005.03180 (2020)
[5.]
Cai S, Wang Z, Wang S, Perdikaris P, Karniadakis GE. Physics-informed neural networks for heat transfer problems. J. Heat Transfer, 2021, 143(6),
CrossRef Google scholar
[6.]
Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021). https://doi.org/10.1109/cvpr46437.2021.00574
[7.]
Chen Y, Dong B, Xu J. Meta-MgNet: meta multigrid networks for solving parameterized partial differential equations. J. Comput. Phys., 2022, 455,
CrossRef Google scholar
[8.]
Cohen A, DeVore R. Approximation of high-dimensional parametric PDEs. Acta Numerica, 2015, 24: 1-159,
CrossRef Google scholar
[9.]
Cohen A, DeVore R, Petrova G, Wojtaszczyk P. Optimal stable nonlinear approximation. Foundat. Comput. Math., 2022, 22: 607-648,
CrossRef Google scholar
[10.]
Cohen A, DeVore R, Schwab C. Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl., 2011, 9(1): 11-47,
CrossRef Google scholar
[11.]
DeVore RA, Howard R, Micchelli CA. Optimal nonlinear approximation. Manuscripta Mathematica, 1989, 63: 469-478,
CrossRef Google scholar
[12.]
Dupont, E., Kim, H., Eslami, S.M.A., Rezende, D.J., Rosenbaum, D.: From data to functa: your data point is a function and you can treat it like one. In: Proceedings of the 39th International Conference on Machine Learning (2022)
[13.]
E, W., Yu, B.: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6(1), 1–12 (2018)
[14.]
Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks. International Conference on Machine Learning, 2017 PMLR 1126-1135
[15.]
Franco NR, Manzoni A, Zunino P. A deep learning approach to reduced order modelling of parameter dependent partial differential equations. Math. Comput., 2023, 92(340): 483-524,
CrossRef Google scholar
[16.]
Fresca S, Dede’ L, Manzoni A. A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs. J. Sci. Comput., 2021, 87(2): 61,
CrossRef Google scholar
[17.]
Fresca S, Gobat G, Fedeli P, Frangi A, Manzoni A. Deep learning-based reduced order models for the real-time simulation of the nonlinear dynamics of microstructures. Int. J. Numer. Methods Eng., 2022, 123(20): 4749-4777,
CrossRef Google scholar
[18.]
Gedney SD. Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Syn. Lectures Comput. Electromag., 2011, 6(1): 1-250,
CrossRef Google scholar
[19.]
Greif C, Urban K. Decay of the Kolmogorov N-width for wave problems. Appl. Math. Lett., 2019, 96: 216-222,
CrossRef Google scholar
[20.]
Huang, X., Liu, H., Shi, B., Wang, Z., Yang, K., Li, Y., Weng, B., Wang, M., Chu, H., Zhou, J., Fan, Y., Hua, B., Chen, L., Dong, B.: Solving partial differential equations with point source based on physics-informed neural networks. arXiv:2111.01394 (2021)
[21.]
Huang X, Ye Z, Liu H, Shi B, Wang Z, Yang K, Li Y, Weng B, Wang M, Chu H, Zhou J, Fan Y, Hua B, Chen L, Dong B. Meta-auto-decoder for solving parametric partial differential equations. Adv. Neural Infor. Process. Syst., 2022, 35: 23426-23438
[22.]
Jiang, C.M., Esmaeilzadeh, S., Azizzadenesheli, K., Kashinath, K., Mustafa, M., Tchelepi, H.A., Marcus, P., Prabhat, M., Anandkumar, A.: MeshfreeFlownet: a physics-constrained deep continuous space-time super-resolution framework. In: International Conference for High Performance Computing, Networking, Storage, and Analysis (2020)
[23.]
Khoo Y, Lu J, Ying L. Solving parametric PDE problems with artificial neural networks. Eur. J. Appl. Math., 2021, 32(3): 421-435,
CrossRef Google scholar
[24.]
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)
[25.]
Kochkov, D., Smith, J., Alieva, A., Wang, Q., Brenner, M., Hoyer, S.: Machine learning accelerated computational fluid dynamics. Proceedings of the National Academy of Sciences of the United States of America. 118(21), 1 (2021)
[26.]
Lee K, Carlberg KT. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J. Comput. Phys., 2020, 404,
CrossRef Google scholar
[27.]
Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A.: Fourier neural operator for parametric partial differential equations. arXiv:2010.08895 (2020)
[28.]
Liszka T, Orkisz J. The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Struct., 1980, 11(1/2): 83-95,
CrossRef Google scholar
[29.]
Liu, X., Zhang, X., Peng, W., Zhou, W., Yao, W.: A novel meta-learning initialization method for physics-informed neural networks. arXiv:2107.10991 (2021)
[30.]
Liu Y, Li J, Sun S, Yu B. Advances in Gaussian random field generation: a review. Comput. Geosci., 2019, 23(5): 1011-1047,
CrossRef Google scholar
[31.]
Long Z, Lu Y, Dong B. PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network. J. Comput. Phys., 2019, 399,
CrossRef Google scholar
[32.]
Long Z, Lu Y, Ma X, Dong B. PDE-Net: learning PDEs from data. International Conference on Machine Learning, 2018 PMLR 3208-3216
[33.]
Lu, Y., Chen, H., Lu, J., Ying, L., Blanchet, J.: Machine learning for elliptic PDEs: fast rate generalization bound, neural scaling law and minimax optimality. In: International Conference on Learning Representations (2022)
[34.]
Lu, L., Jin, P., Karniadakis, G.E.: DeepONet: learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv:1910.03193 (2019)
[35.]
Lu L, Meng X, Cai S, Mao Z, Goswami S, Zhang Z, Karniadakis GE. A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data. Comput. Methods Appl. Mech. Eng., 2022, 393,
CrossRef Google scholar
[36.]
Lu L, Pestourie R, Yao W, Wang Z, Verdugo F, Johnson SG. Physics-informed neural networks with hard constraints for inverse design. SIAM J. Sci. Comput., 2021, 43: B1105-B1132,
CrossRef Google scholar
[37.]
Mehta, I., Gharbi, M., Barnes, C., Shechtman, E., Ramamoorthi, R., Chandraker, M.: Modulated periodic activations for generalizable local functional representations. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (2021). https://doi.org/10.1109/iccv48922.2021.01395
[38.]
Nichol, A., Schulman, J.: Reptile: a scalable metalearning algorithm. arXiv:1803.02999 (2018)
[39.]
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)
[40.]
Psaros AF, Kawaguchi K, Karniadakis GE. Meta-learning PINN loss functions. J. Comput. Phys., 2022, 458,
CrossRef Google scholar
[41.]
Quarteroni A, Manzoni A, Negri F. . Reduced Basis Methods for Partial Differential Equations: an Introduction, 2015 Switzerland Springer
[42.]
Raissi M. Deep hidden physics models: deep learning of nonlinear partial differential equations. J. Mach. Learn. Res., 2018, 19(1): 932-955
[43.]
Schneider, J.B.: Understanding the Finite-Difference Time-Domain Method. School of Electrical Engineering and Computer Science. Washington State University 28 (2010)
[44.]
Sirignano J, Spiliopoulos K. DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys., 2018, 375: 1339-1364,
CrossRef Google scholar
[45.]
Sitzmann V, Martel J, Bergman A, Lindell D, Wetzstein G. Implicit neural representations with periodic activation functions. Adv. Neural Informat. Process. Syst., 2020, 33: 7462-7473
[46.]
Stanziola A, Arridge SR, Cox BT, Treeby BE. A Helmholtz equation solver using unsupervised learning: application to transcranial ultrasound. J. Comput. Phys., 2021, 441,
CrossRef Google scholar
[47.]
Tran H, Webster CG, Zhang G. Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients. Numerische Mathematik, 2017, 137(2): 451-493,
CrossRef Google scholar
[48.]
Treeby BE, Cox BT. k-Wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Optics, 2010, 15(2),
CrossRef Google scholar
[49.]
Wang, C., Li, S., He, D., Wang, L.: Is L 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} physics informed loss always suitable for training physics informed neural network? In: Advances in Neural Information Processing Systems (2022)
[50.]
Wang, S., Wang, H., Perdikaris, P.: Learning the solution operator of parametric partial differential equations with physics-informed deeponets. arXiv:2103.10974 (2021)
[51.]
Yoon, J., Kim, T., Dia, O., Kim, S., Bengio, Y., Ahn, S.: Bayesian model-agnostic meta-learning. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 7343–7353 (2018)
[52.]
Zang Y, Bao G, Ye X, Zhou H. Weak adversarial networks for high-dimensional partial differential equations. J. Comput. Phys., 2020, 411,
CrossRef Google scholar
[53.]
Zienkiewicz OC, Taylor RL, Nithiarasu P, Zhu J. . The Finite Element Method, 1977 London McGraw-hill
Funding
National Key R &D Program of China(2021ZD0110400)

Accesses

Citations

Detail

Sections
Recommended

/