Piecewise Acoustic Source Imaging with Unknown Speed of Sound Using a Level-Set Method

Guanghui Huang, Jianliang Qian, Yang Yang

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (2) : 1070-1095. DOI: 10.1007/s42967-023-00291-9
Original Paper

Piecewise Acoustic Source Imaging with Unknown Speed of Sound Using a Level-Set Method

Author information +
History +

Abstract

We investigate the following inverse problem: starting from the acoustic wave equation, reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of sound. When the amplitudes of the source are known a priori, we prove a unique determination result of the shape and propose a level set algorithm to reconstruct the singularities. When the singularities of the source are known a priori, we show unique determination of the source amplitudes and propose a least-squares fitting algorithm to recover the source amplitudes. The analysis bridges the low-frequency source inversion problem and the inverse problem of gravimetry. The proposed algorithms are validated and quantitatively evaluated with numerical experiments in 2D and 3D.

Keywords

Inverse gravimetry / Acoustic source imaging / Inversion of sound speed / Level-set method / Inverse problem

Cite this article

Download citation ▾
Guanghui Huang, Jianliang Qian, Yang Yang. Piecewise Acoustic Source Imaging with Unknown Speed of Sound Using a Level-Set Method. Communications on Applied Mathematics and Computation, 2023, 6(2): 1070‒1095 https://doi.org/10.1007/s42967-023-00291-9

References

[1.]
Acosta Sebastian. Recovery of pressure and wave speed for photoacoustic imaging under a condition of relative uncertainty. Inverse Problem, 2019, 35(11)
[2.]
Agranovsky Mark, Kuchment Peter. Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inverse Problems, 2007, 23(5): 2089
[3.]
Arridge, S.R., Betcke, M.M., Cox, B.T., Lucka, F., Treeby, B.E.: On the adjoint operator in photoacoustic tomography. Inverse Problems 32(11), 115012 (2016)
[4.]
Bao Gang, Lin Junshan, Triki Faouzi. A multi-frequency inverse source problem. J. Differential Equations, 2010, 249(12): 3443-3465
[5.]
Belhachmi Zakaria, Glatz Thomas, Scherzer Otmar. A direct method for photoacoustic tomography with inhomogeneous sound speed. Inverse Problems, 2016, 32(4)
[6.]
Chung E, Lam CY, Qian J. A Neumann series based method for photoacoustic tomography on irregular domains. Contemporary Mathematics, 2014, 615: 89-104
[7.]
Colton DL, Kress R, Kress R. . Inverse acoustic and electromagnetic scattering theory, 1998 New York Springer
[8.]
Finch D, Hickmann KS. Transmission eigenvalues and thermoacoustic tomography. Inverse Problems, 2013, 29(10)
[9.]
Glowinski R, Leung S, Qian J. A penalization-regularization-operator splitting method for Eikonal-based traveltime tomography. SIAM J. Imaging Sci., 2015, 8: 1263-1292
[10.]
Herglotz, G.: Über die analytische Fortsetzung des Potentials ins Innere der anziehenden Massen, volume 44. Teubner (1914)
[11.]
Hristova Yulia, Kuchment Peter, Nguyen Linh. Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Problems, 2008, 24(5)
[12.]
Huang C, Wang K, Schoonover RW, Wang LV, Anastasio MA. Joint reconstruction of absorbed optical energy density and sound speed distributions in photoacoustic computed tomography: a numerical investigation. IEEE Transact. comput. imaging, 2016, 2(2): 136-149
[13.]
Huang G, Qian J. Analysis of Kantonovich-Rubinstein norm and its application to inverse gravity problem. SIAM J. Imaging Sci., 2019, 12(3): 1528-1560
[14.]
Huang G, Zhang X, Qian J. Kantorovich-Rubinstein misfit for inverting gravity-gradient data by the level-set method. Geophysics, 2019, 84(5): G55-G73
[15.]
Isakov, V.: Inverse Source Problems. American Mathematical Society, Providence, Rhode Island (1990)
[16.]
Isakov V. . Inverse problems for partial differential equations, 2006 New York Springer
[17.]
Isakov V, Leung S, Qian J. A fast local level set method for inverse gravimetry. Comm. Comput. Phys., 2011, 10: 1044-1070
[18.]
Isakov V, Leung S, Qian J. A three-dimensional inverse gravimetry problem for ice with snow caps. Inverse Prob. Imaging, 2013, 7: 523-544
[19.]
Ishii M, Shearer PM, Houston H, Vidale JE. Extent, duration and speed of the 2004 sumatra-andaman earthquake imaged by the hi-net array. Nature, 2005, 435(7044): 933-936
[20.]
Johnson, R.L., Scott, M.P., Jeffrey, R.G., Chen, Z., Bennett, L., Vandenborn, C., Tcherkashnev, S.: Evaluating hydraulic fracture effectiveness in a coal seam gas reservoir from surface tiltmeter and microseismic monitoring. In: SPE Annual Technical Conference and Exhibition. OnePetro (2010)
[21.]
Knox Christina, Moradifam Amir. Determining both the source of a wave and its speed in a medium from boundary measurements. Inverse Problems, 2020, 36(2)
[22.]
Leung S, Qian J. An adjoint state method for three-dimensional transmission traveltime tomography using first-arrivals. Comm. Math. Sci., 2006, 4: 249-266
[23.]
Leung S, Qian J, Hu J. A level-set adjoint-state method for transmission traveltime tomography in irregular domains. SIAM J. Sci. Comput., 2021, 43: A2352-A2380
[24.]
Li W, Leung S, Qian J. A level set-adjoint state method for crosswell transmission-reflection traveltime tomography. Geophys. J. Internat., 2014, 199: 348-367
[25.]
Li W, Lu W, Qian J. A level set method for imaging salt structures using gravity data. Geophysics, 2016, 81(2): G35-G51
[26.]
Li W, Lu W, Qian J, Li Y. A multiple level set method for three-dimensional inversion of magnetic data. Geophysics, 2017, 82(5): J61-J81
[27.]
Li W, Qian J. Joint inversion of gravity and traveltime data using a level-set based structural parameterization. Geophysics, 2016, 81(6): G107-G119
[28.]
Li W, Qian J. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Prob. Imaging, 2021, 15: 387-413
[29.]
Li W, Qian J. Kantorovich-Rubinstein metric based level-set methods for inverting modulus of gravity-force data. Inverse Prob. Imaging, 2022, 16: 1643-1667
[30.]
Liu Hongyu, Uhlmann Gunther. Determining both sound speed and internal source in thermo- and photo-acoustic tomography. Inverse Problems, 2015, 31(10)
[31.]
Lu W, Leung S, Qian J. An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Prob. Imaging, 2015, 9: 479-509
[32.]
Lu W, Qian J. A local level set method for three-dimensional inversion of gravity gradiometry data. Geophysics, 2015, 80: G35-G51
[33.]
Matthews TP, Poudel J, Li L, Wang LV, Anastasio MA. Parameterized joint reconstruction of the initial pressure and sound speed distributions for photoacoustic computed tomography. SIAM J Imaging Sci, 2018, 11(2): 1560-1588
[34.]
Osher SJ, Fedkiw R. . Level set methods and dynamic implicit surfaces, 2003 New York Springer
[35.]
Osher SJ, Sethian JA. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 1988, 79: 12-49
[36.]
Osher SJ, Shu C-W. High-order Essentially NonOscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Analy., 1991, 28: 907-922
[37.]
Qian Jianliang, Stefanov Plamen, Uhlmann Gunther, Zhao Hongkai. An efficient Neumann series-based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed. SIAM J. Imag. Sci., 2011, 4(3): 850-883
[38.]
Qin, S., Yang, Y., Wang, R.: Source independent velocity recovery using imaginary FWI. In: 82nd EAGE Annual Conference & Exhibition, vol. 2021, pp. 1–5. European Association of Geoscientists & Engineers (2021)
[39.]
Shan, H., Wiedeman, C., Wang, G., Yang, Y.: Simultaneous reconstruction of the initial pressure and sound speed in photoacoustic tomography using a deep-learning approach. In: Novel Optical Systems, Methods, and Applications XXII, vol. 11105, pp. 1110504. International Society for Optics and Photonics (2019)
[40.]
Sharan S, Wang R, Herrmann FJ. Fast sparsity-promoting microseismic source estimation. Geophys. J. Int., 2019, 216(1): 164-181
[41.]
Stefanov Plamen, Uhlmann Gunther. Thermoacoustic tomography with variable sound speed. Inverse Problems, 2009, 25(7)
[42.]
Stefanov, P., Uhlmann, G.: Instability of the linearized problem in multiwave tomography of recovery both the source and the speed. arXiv:1211.6217 (2012)
[43.]
Sun, J., Xue, Z., Zhu, T., Fomel, S., Nakata, N.: Full-waveform inversion of passive seismic data for sources and velocities. In: SEG Technical Program Expanded Abstracts 2016, pp. 1405–1410. Society of Exploration Geophysicists (2016)
[44.]
Sussman M, Smereka P, Osher SJ. A level set approach for computing solutions to incompressible two-phase flows. J. Comput. Phys., 1994, 114: 146-159
[45.]
Tick Jenni, Pulkkinen Aki, Tarvainen Tanja. Modelling of errors due to speed of sound variations in photoacoustic tomography using a Bayesian framework. Biomed. Phys. Eng. Express, 2019, 6(1)
[46.]
Treeby BE, Cox BT. k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Optics, 2010, 15(2)
[47.]
van den Doel K, Ascher UM, Leitao A. Multiple level sets for piecewise constant surface reconstruction in highly ill-posed problems. J. Sci. Comput., 2010, 43(1): 44-66
[48.]
Wang Hanchen, Alkhalifah Tariq. Microseismic imaging using a source function independent full waveform inversion method. Geophys. J. Int., 2018, 214(1): 46-57
[49.]
Wang, K., Anastasio, M.A.: Photoacoustic and thermoacoustic tomography: image formation principles. In: Handbook of Mathematical Methods in Imaging. Springer, New York (2015)
[50.]
Wang LV, Wu H-I. . Biomedical optics: principles and Imaging, 2007 New Jersey Wiley-Interscience
[51.]
Xia J, Yao J, Wang LV. Photoacoustic tomography: principles and advances. Electromagnetic Waves (Cambridge Mass.), 2014, 147: 1-22
[52.]
Xu M, Wang LV. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum., 2006, 77(4)
[53.]
Ye M, Cao M, Feng T, Yuan J, Cheng Q, Liu X, Xu G, Wang X. Automatic speed of sound correction with photoacoustic image reconstruction. Photons Plus Ultrasound, 2016, 9708: 601-606
[54.]
Yoon C, Kang J, Han S, Yoo Y, Song T-K, Chang J. Enhancement of photoacoustic image quality by sound speed correction: ex vivo evaluation. Optics Express, 2012, 20(3): 3082-3090
[55.]
Zhang, J., Wang, K., Yang, Y., Anastasio., M.A.: Simultaneous reconstruction of speed-of-sound and optical absorption properties in photoacoustic tomography via a time-domain iterative algorithm. In: Photons Plus Ultrasound: Imaging and Sensing 2008: the Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 6856, pp. 68561F. International Society for Optics and Photonics (2008)
Funding
National Science Foundation(2012046); National Science Foundation(2152011)

Accesses

Citations

Detail

Sections
Recommended

/