Second-Order Accurate Structure-Preserving Scheme for Solute Transport on Polygonal Meshes

Naren Vohra, Konstantin Lipnikov, Svetlana Tokareva

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (3) : 1600-1628. DOI: 10.1007/s42967-023-00289-3
Original Paper

Second-Order Accurate Structure-Preserving Scheme for Solute Transport on Polygonal Meshes

Author information +
History +

Abstract

We analyze mimetic properties of a conservative finite-volume (FV) scheme on polygonal meshes used for modeling solute transport on a surface with variable elevation. Polygonal meshes not only provide enormous mesh generation flexibility, but also tend to improve stability properties of numerical schemes and reduce bias towards any particular mesh direction. The mathematical model is given by a system of weakly coupled shallow water and linear transport equations. The equations are discretized using different explicit cell-centered FV schemes for flow and transport subsystems with different time steps. The discrete shallow water scheme is well balanced and preserves the positivity of the water depth. We provide a rigorous estimate of a stable time step for the shallow water and transport scheme and prove a bounds-preserving property of the solute concentration. The scheme is second-order accurate over fully wet regions and first-order accurate over partially wet or dry regions. Theoretical results are verified with numerical experiments on rectangular, triangular, and polygonal meshes.

Keywords

Hyperbolic coupled system / Shallow water equations / Linear solute transport / Finite-volume (FV) schemes / Bounds-preservation

Cite this article

Download citation ▾
Naren Vohra, Konstantin Lipnikov, Svetlana Tokareva. Second-Order Accurate Structure-Preserving Scheme for Solute Transport on Polygonal Meshes. Communications on Applied Mathematics and Computation, 2023, 6(3): 1600‒1628 https://doi.org/10.1007/s42967-023-00289-3

References

[1.]
Audusse E, Bouchut F, Bristeau M-O, Klein R, Perthame B. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput., 2004, 25: 2050-2065,
CrossRef Google scholar
[2.]
Barth, T., Jespersen, D.: The design and application of upwind schemes on unstructured meshes. In: 27th Aerospace Sciences Meeting (1989). https://doi.org/10.2514/6.1989-366
[3.]
Beljadid A, Mohammadian A, Kurganov A. Well-balanced positivity preserving cell-vertex central-upwind scheme for shallow water flows. Comput. Fluids, 2016, 136: 193-206,
CrossRef Google scholar
[4.]
Berthon C, Foucher F. Efficient well-balanced hydrostatic upwind schemes for shallow-water equations. J. Comput. Phys., 2012, 231(15): 4993-5015,
CrossRef Google scholar
[5.]
Bollermann A, Chen G, Kurganov A, Noelle S. A well-balanced reconstruction of wet/dry fronts for the shallow water equations. J. Sci. Comput., 2013, 56: 267-290,
CrossRef Google scholar
[6.]
Bollermann A, Noelle S, Lukacova-Medvidova M. Finite volume evolution Galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys., 2011, 10: 371-404,
CrossRef Google scholar
[7.]
Bryson S, Epshteyn Y, Kurganov A, Petrova G. Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system. ESAIM Math. Model. Numer. Anal., 2011, 45: 423-446,
CrossRef Google scholar
[8.]
Castro Díaz, M. J., Kurganov, A., Morales de Luna, T.: Path-conservative central-upwind schemes for nonconservative hyperbolic systems. ESAIM: M2AN 53(3), 959–985 (2019). https://doi.org/10.1051/m2an/2018077
[9.]
Castro, M. J., Morales de Luna, T., Parés, C.: Chapter 6 - Well-balanced schemes and path-conservative numerical methods. In: Abgrall, R., Shu, C.-W. (eds) Handbook of Numerical Methods for Hyperbolic Problems: Applied and Modern Issues, Volume XVIII of Handbook of Numerical Analysis, pp. 131–175. Elsevier (2017). https://doi.org/10.1016/bs.hna.2016.10.002
[10.]
Chertock A, Cui S, Kurganov A, Wu T. Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms. Int. J. Numer. Methods Fluids, 2015, 78: 04,
CrossRef Google scholar
[11.]
Coon E, Moulton J, Painter S. Managing complexity in simulations of land surface and near-surface processes. Environ. Model. Softw., 2016, 78: 134-149,
CrossRef Google scholar
[12.]
Fernàndez-Nieto, E., Narbona-Reina, G.: Extension of WAF type methods to non-homogeneous shallow water equations with pollutant. J. Sci. Comput. 36, 193–217 (2008). https://doi.org/10.1007/s10915-008-9185-9
[13.]
Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-0713-9
[14.]
Jameson, A.: Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows. In: 11th AIAA Computational Fluid Dynamics Conference (1993). https://doi.org/10.2514/6.1993-3359
[15.]
Kurganov A. Finite-volume schemes for shallow-water equations. Acta Numer., 2018, 27: 289-351,
CrossRef Google scholar
[16.]
Kurganov, A., Levy, D.: Central-upwind schemes for the Saint-Venant system. Math. Model. Numer. Anal. 36, 397–425 (2002). https://doi.org/10.1051/m2an:2002019
[17.]
Kurganov A, Petrova G. A second-order well-balanced positivity preserving central-upwind scheme for the Saint–Venant system. Commun. Math. Sci., 2007, 5: 03,
CrossRef Google scholar
[18.]
Kuzmin D. A vertex-based hierarchical slope limiter for p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-adaptive discontinuous Galerkin methods. J. Comput. Appl. Math., 2010, 233(12): 3077-3085,
CrossRef Google scholar
[19.]
Kuzmin, D., Lohner, R., Turek, S.: Flux-Corrected Transport: Principles, Algorithms, and Applications. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/b138754
[20.]
LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press (2002). https://doi.org/10.1017/CBO9780511791253
[21.]
Liu, X.: A well-balanced and positivity-preserving numerical model for shallow water flows in channels with wet-dry fronts. J. Sci. Comput. 85, 60 (2020). https://doi.org/10.1007/s10915-020-01362-2
[22.]
Liu X, Albright J, Epshteyn Y, Kurganov A. Well-balanced positivity preserving central-upwind scheme with a novel wet/dry reconstruction on triangular grids for the Saint-Venant system. J. Comput. Phys., 2018, 374: 213-236,
CrossRef Google scholar
[23.]
Macián-Pérez, J.F., García-Bartual, R., Huber, B., Bayon, A., Vallés-Morán, F.J.: Analysis of the flow in a typified USBR II stilling basin through a numerical and physical modeling approach. Water 12(1), 227 (2020). https://doi.org/10.3390/w12010227
[24.]
Noelle S, Pankratz N, Puppo G, Natvig JR. Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys., 2006, 213(2): 474-499,
CrossRef Google scholar
[25.]
Ricchiuto M, Abgrall R, Deconinck H. Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes. J. Comput. Phys., 2007, 222(1): 287-331,
CrossRef Google scholar
[26.]
Ricchiuto, M., Bollermann, A.: Stabilized residual distribution for shallow water simulations. J. Comput. Phys. 228, 1071–1115 (2009). https://doi.org/10.1016/j.jcp.2008.10.020
[27.]
Rusanov VV. The calculation of the interaction of non-stationary shock waves and obstacles. USSR Comput. Math. Math. Phys., 1962, 1(2): 304-320,
CrossRef Google scholar
[28.]
Shirkhani H, Mohammadian A, Seidou O, Kurganov A. A well-balanced positivity-preserving central-upwind scheme for shallow water equations on unstructured quadrilateral grids. Comput. Fluids, 2016, 126: 25-40,
CrossRef Google scholar
[29.]
Thacker WC. Some exact solutions to the nonlinear shallow-water wave equations. J. Fluid Mech., 1981, 107: 499-508,
CrossRef Google scholar
[30.]
Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/b79761
[31.]
Wainwright, H., Faybishenko, B., Molins, S., Davis, J., Arora, B., Pau, G., Flach, G., Denham, M., Eddy-Dilek, C., Moulton, D., Lipnikov, K., Gable, C., Miller, T., Barker, E., Freedman, V., Johnson, J.N., Freshley, M.: Effective long-term monitoring strategies by integrating reactive transport models with in situ geochemical measurements. In: Proceeding of WM2016 Conf. March 6–10, 2016 Phoenix, AZ (2016)
[32.]
Xing Y, Shu C-W. High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys., 2005, 208(1): 206-227,
CrossRef Google scholar
[33.]
Xing Y, Shu C-W. A survey of high order schemes for the shallow water equations. J. Math. Study, 2014, 47(3): 221-249,
CrossRef Google scholar
[34.]
Xing Y, Zhang X, Shu C-W. Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour., 2010, 33(12): 1476-1493,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/