Stability and Time-Step Constraints of Implicit-Explicit Runge-Kutta Methods for the Linearized Korteweg-de Vries Equation

Joseph Hunter, Zheng Sun, Yulong Xing

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (1) : 658-687. DOI: 10.1007/s42967-023-00285-7
Original Paper

Stability and Time-Step Constraints of Implicit-Explicit Runge-Kutta Methods for the Linearized Korteweg-de Vries Equation

Author information +
History +

Abstract

This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries (KdV) equation, using implicit-explicit (IMEX) Runge-Kutta (RK) time integration methods combined with either finite difference (FD) or local discontinuous Galerkin (DG) spatial discretization. We analyze the stability of the fully discrete scheme, on a uniform mesh with periodic boundary conditions, using the Fourier method. For the linearized KdV equation, the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy (CFL) condition

τ λ ^ h
. Here,
λ ^
is the CFL number,
τ
is the time-step size, and h is the spatial mesh size. We study several IMEX schemes and characterize their CFL number as a function of
θ = d / h 2
with d being the dispersion coefficient, which leads to several interesting observations. We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods. Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.

Keywords

Linearized Korteweg-de Vries (KdV) equation / Implicit-explicit (IMEX) Runge-Kutta (RK) method / Stability / Courant-Friedrichs-Lewy (CFL) condition / Finite difference (FD) method / Local discontinuous Galerkin (DG) method

Cite this article

Download citation ▾
Joseph Hunter, Zheng Sun, Yulong Xing. Stability and Time-Step Constraints of Implicit-Explicit Runge-Kutta Methods for the Linearized Korteweg-de Vries Equation. Communications on Applied Mathematics and Computation, 2023, 6(1): 658‒687 https://doi.org/10.1007/s42967-023-00285-7

References

[1.]
Akrivis G, Crouzeix M, Makridakis C. Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comp., 1998, 67(222): 457-477,
CrossRef Google scholar
[2.]
Akrivis G, Crouzeix M, Makridakis C. Implicit-explicit multistep methods for quasilinear parabolic equations. Numer. Math., 1999, 82: 521-541,
CrossRef Google scholar
[4.]
Ascher UM, Ruuth SJ, Wetton BT. Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal., 1995, 32(3): 797-823,
CrossRef Google scholar
[3.]
Ascher UM, Ruuth SJ, Spiteri RJ. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math., 1997, 25(2/3): 151-167,
CrossRef Google scholar
[5.]
Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys., 1997, 131(2): 267-279,
CrossRef Google scholar
[6.]
Bona JL, Chen H, Karakashian OA, Xing Y. Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation. Math. Comput., 2013, 82: 1401-1432,
CrossRef Google scholar
[7.]
Boscarino S, Pareschi L, Russo G. Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput., 2013, 35(1): A22-A51,
CrossRef Google scholar
[8.]
Calvo M, De Frutos J, Novo J. Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations. Appl Numer Math, 2001, 37(4): 535-549,
CrossRef Google scholar
[9.]
Cheng Y, Chou C-S, Li F, Xing Y. L 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}^2$$\end{document} stable discontinuous Galerkin methods for one-dimensional two-way wave equations. Math. Comp., 2017, 86(303): 121-155,
CrossRef Google scholar
[10.]
Chuenjarern N, Yang Y. Fourier analysis of local discontinuous Galerkin methods for linear parabolic equations on overlapping meshes. J. Sci. Comput., 2019, 81: 671-688,
CrossRef Google scholar
[11.]
Cockburn B, Shu C-W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal., 1998, 35(6): 2440-2463,
CrossRef Google scholar
[12.]
Cockburn B, Shu C-W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput., 2001, 16(3): 173-261,
CrossRef Google scholar
[13.]
Dehghan M, Abbaszadeh M. Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction-diffusion system with and without cross-diffusion. Compu Method Appl Mech Engrg, 2016, 300: 770-797,
CrossRef Google scholar
[14.]
Deng W, Hesthaven JS. Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM Math Model Numer Anal, 2013, 47(6): 1845-1864,
CrossRef Google scholar
[15.]
Dutykh D, Katsaounis T, Mitsotakis D. Finite volume methods for unidirectional dispersive wave models. Internat J Numer Methods Fluids, 2013, 71(6): 717-736,
CrossRef Google scholar
[16.]
Frean DJ, Ryan JK. Superconvergence and the numerical flux: a study using the upwind-biased flux in discontinuous Galerkin methods. Commun Appl Math Comp, 2020, 2(3): 461-486,
CrossRef Google scholar
[17.]
Gottlieb S, Grant ZJ, Hu J, Shu R. High order strong stability preserving multiderivative implicit and IMEX Runge-Kutta methods with asymptotic preserving properties. SIAM J. Numer. Anal., 2022, 60(1): 423-449,
CrossRef Google scholar
[18.]
Guo W, Zhong X, Qiu J-M. Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: eigen-structure analysis based on Fourier approach. J. Comput. Phys., 2013, 235: 458-485,
CrossRef Google scholar
[19.]
Hairer, E., Wanner, G.: Stability function of implicit RK-methods. In: Hairer, E., Wanner, G. (eds) Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, pp. 40–50. Springer Berlin, Heidelberg (1996)
[20.]
Hufford C, Xing Y. Superconvergence of the local discontinuous Galerkin method for the linearized Korteweg-de Vries equation. J. Comput. Appl. Math., 2014, 255: 441-455,
CrossRef Google scholar
[21.]
Kanevsky A, Carpenter MH, Gottlieb D, Hesthaven JS. Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes. J. Comput. Phys., 2007, 225(2): 1753-1781,
CrossRef Google scholar
[22.]
Li X, Xing Y, Chou C-S. Optimal energy conserving and energy dissipative local discontinuous Galerkin methods for the Benjamin-Bona-Mahony equation. J. Sci. Comput., 2020, 83: 17,
CrossRef Google scholar
[23.]
Li Y, Shu C-W, Tang S. A local discontinuous Galerkin method for nonlinear parabolic SPDEs. ESAIM Math Model Numer Anal, 2021, 55: S187-S223,
CrossRef Google scholar
[24.]
Pareschi L, Russo G. Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput., 2005, 25: 129-155
[25.]
Sun J, Xie S, Xing Y. Local discontinuous Galerkin methods for the nonlinear abcd-Boussinesq system. Commun Appl Mathe Comp, 2022, 4(2): 381-416,
CrossRef Google scholar
[26.]
Sun Z, Shu C-W. Strong stability of explicit Runge-Kutta time discretizations. SIAM J. Numer. Anal., 2019, 57(3): 1158-1182,
CrossRef Google scholar
[27.]
Sun Z, Xing Y. On structure-preserving discontinuous Galerkin methods for Hamiltonian partial differential equations: energy conservation and multi-symplecticity. J. Comput. Phys., 2020, 419,
CrossRef Google scholar
[28.]
Tan M, Cheng J, Shu C-W. Stability of high order finite difference schemes with implicit-explicit time-marching for convection-diffusion and convection-dispersion equations. Int. J. Numer. Anal. Model., 2021, 18(3): 362-383
[29.]
Tan M, Cheng J, Shu C-W. Stability of high order finite difference and local discontinuous Galerkin schemes with explicit-implicit-null time-marching for high order dissipative and dispersive equations. J. Comput. Phys., 2022, 464,
CrossRef Google scholar
[30.]
Tian L, Xu Y, Kuerten JG, van der Vegt JJ. An h-adaptive local discontinuous Galerkin method for the Navier-Stokes-Korteweg equations. J. Comput. Phys., 2016, 319: 242-265,
CrossRef Google scholar
[31.]
Wang H, Shu C-W, Zhang Q. Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer. Anal., 2015, 53(1): 206-227,
CrossRef Google scholar
[32.]
Xu Y, Shu C-W. Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys., 2010, 7(1): 1-46,
CrossRef Google scholar
[33.]
Yan J, Shu C-W. A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal., 2002, 40(2): 769-791,
CrossRef Google scholar
[34.]
Yang H, Li F, Qiu J. Dispersion and dissipation errors of two fully discrete discontinuous Galerkin methods. J. Sci. Comput., 2013, 55(3): 552-574,
CrossRef Google scholar
[35.]
Zhang M, Shu C-W. An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math. Models Methods Appl. Sci., 2003, 13(03): 395-413,
CrossRef Google scholar
[36.]
Zhong X, Shu C-W. Numerical resolution of discontinuous Galerkin methods for time dependent wave equations. Comput. Methods Appl. Mech. Engrg., 2011, 200(41/42/43/44): 2814-2827,
CrossRef Google scholar
Funding
National Science Foundation(DMS-1753581); National Science Foundation(DMS-2208391)

Accesses

Citations

Detail

Sections
Recommended

/