A Stable FE-FD Method for Anisotropic Parabolic PDEs with Moving Interfaces

Baiying Dong, Zhilin Li, Juan Ruiz-Álvarez

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (2) : 992-1012. DOI: 10.1007/s42967-023-00281-x
Original Paper

A Stable FE-FD Method for Anisotropic Parabolic PDEs with Moving Interfaces

Author information +
History +

Abstract

In this paper, a new finite element and finite difference (FE-FD) method has been developed for anisotropic parabolic interface problems with a known moving interface using Cartesian meshes. In the spatial discretization, the standard

P 1
FE discretization is applied so that the part of the coefficient matrix is symmetric positive definite, while near the interface, the maximum principle preserving immersed interface discretization is applied. In the time discretization, a modified Crank-Nicolson discretization is employed so that the hybrid FE-FD is stable and second order accurate. Correction terms are needed when the interface crosses grid lines. The moving interface is represented by the zero level set of a Lipschitz continuous function. Numerical experiments presented in this paper confirm second order convergence.

Keywords

Anisotropic parabolic interface problem / Hybrid finite element and finite difference (FE-FD) discretization / Modified Crank-Nicolson scheme

Cite this article

Download citation ▾
Baiying Dong, Zhilin Li, Juan Ruiz-Álvarez. A Stable FE-FD Method for Anisotropic Parabolic PDEs with Moving Interfaces. Communications on Applied Mathematics and Computation, 2023, 6(2): 992‒1012 https://doi.org/10.1007/s42967-023-00281-x

References

[1.]
Adams L, Li Z. The immersed interface/multigrid methods for interface problems. SIAM J. Sci. Comput., 2002, 24: 463-479,
CrossRef Google scholar
[2.]
Bergmann S, Albe K, Flegel E, Barragan-Yani DA, Wagner B. Anisotropic solid-liquid interface kinetics in silicon: an atomistically informed phase-field model. Modell. Simul. Mater. Sci. Eng., 2017, 25(6),
CrossRef Google scholar
[3.]
Braess D. . Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 2007 3 Cambridge Cambridge University Press,
CrossRef Google scholar
[4.]
Brenner SC, Scott LR. . The Mathematical Theory of Finite Element Methods, 2002 New York Springer,
CrossRef Google scholar
[5.]
De Zeeuw D. Matrix-dependent prolongations and restrictions in a blackbox multigrid solver. J. Comput. Appl. Math., 1990, 33: 1-27,
CrossRef Google scholar
[6.]
Dong BY, Feng XF, Li Z. An FE-FD method for anisotropic elliptic interface problems. SIAM J. Sci. Comput., 2020, 42: B1041-B1066,
CrossRef Google scholar
[7.]
Dong BY, Feng XF, Li Z. An L second order Cartesian method for 3D anisotropic elliptic interface problems. J. Comput. Math., 2022, 40: 886-913,
CrossRef Google scholar
[8.]
Evans, L. C.: Partial Differential Equations. AMS (1998)
[9.]
He X, Lin T, Lin Y, Zhang X. Immersed finite element methods for parabolic equations with moving interface. Numer. Methods Partial Differential Equations, 2013, 29(2): 619-646,
CrossRef Google scholar
[10.]
Hou T, Li Z, Osher S, Zhao H. A hybrid method for moving interface problems with application to the Hele-Shaw flow. J. Comput. Phys., 1997, 134: 236-252,
CrossRef Google scholar
[11.]
Huang W, Rokhlin SI. Interface waves along an anisotropic imperfect interface between anisotropic solids. J. Nondestruc. Eval., 1992, 11: 185-198,
CrossRef Google scholar
[12.]
Langer JS. Instabilities and patten formation in crystal growth. Rev. Modern Phys., 1980, 52: 1-28,
CrossRef Google scholar
[13.]
Levitas VI, Warren JA. Phase field approach with anisotropic interface energy and interface stresses: large strain formulation. J. Mech. Phy. Solids., 2016, 91: 94-125,
CrossRef Google scholar
[14.]
Li Z. Immersed interface method for moving interface problems. Numer. Algorithm, 1997, 14: 269-293,
CrossRef Google scholar
[15.]
Li Z, Ito K. Maximum principle preserving schemes for interface problems with discontinuous coefficients. SIAM J. Sci. Comput., 2001, 23: 1225-1242,
CrossRef Google scholar
[16.]
Li Z, Soni B. Fast and accurate numerical approaches for Stefan problems and crystal growth. Numer. Heat Transf. B: Fundam., 1999, 35: 461-484,
CrossRef Google scholar
[17.]
Lin T, Lin Y, Zhang X. A method of lines based on immersed finite elements for parabolic moving interface problems. Adv. Appl. Math. Mech., 2013, 5(4): 548-568,
CrossRef Google scholar
[18.]
Lin T, Lin Y, Zhang X. Immersed finite element method of lines for moving interface problems with nonhomogeneous flux jump. Contemp. Math., 2013, 586: 257-265,
CrossRef Google scholar
[19.]
McFadden GB, Wheeler AA, Braun RJ, Coriell SR, Sekerka RF. Phase-field models for anisotropic interfaces. Phys. Rev. E, 1993, 48: 2016-2024,
CrossRef Google scholar
[20.]
Morton KW, Mayers DF. . Numerical Solution of Partial Differential Equations, 1995 Cambridge Cambridge Press
[21.]
Sethian J, Straint J. Crystal growth and dendritic solidification. J. Comput. Phys., 1992, 98: 231-253,
CrossRef Google scholar
[22.]
Schittkowski, K.: QL-quadratic Programming, version 1.5 (1991). https://www.uni-bayreuth.de/departments/math/~kschittkowski/ql.htm
[23.]
Suo Z. Singularities, interfaces and cracks in dissimilar anisotropic media. Proc. R. Soc. A, 1990, 427: 331-358
[24.]
Tuncel, N. G., Serbest, A. H.: Reflection and refraction by an anisotropic metamaterial slab with diagonal anisotropy. In: 2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), Tel Aviv, Israel, 2015, pp. 1–4. IEEE (2015)
[25.]
Yang Q, Zhang X. Discontinuous Galerkin immersed finite element methods for parabolic interface problems. J. Comput. Appl. Math., 2016, 299: 127-139,
CrossRef Google scholar
Funding
Simons Foundation(633724); CNSF-Ningxia(2021AAC03234)

Accesses

Citations

Detail

Sections
Recommended

/