A Two-Step Modulus-Based Matrix Splitting Iteration Method Without Auxiliary Variables for Solving Vertical Linear Complementarity Problems

Hua Zheng, Xiaoping Lu, Seakweng Vong

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (4) : 2475-2492. DOI: 10.1007/s42967-023-00280-y
Original Paper

A Two-Step Modulus-Based Matrix Splitting Iteration Method Without Auxiliary Variables for Solving Vertical Linear Complementarity Problems

Author information +
History +

Abstract

In this paper, a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong (Appl. Math. Lett. 134:108344, 2022). The convergence analysis of the proposed method is established, which can improve the existing results. Numerical examples show that the proposed method is efficient with the two-step technique.

Keywords

Vertical linear complementarity problem / Modulus-based matrix splitting / Two-step method

Cite this article

Download citation ▾
Hua Zheng, Xiaoping Lu, Seakweng Vong. A Two-Step Modulus-Based Matrix Splitting Iteration Method Without Auxiliary Variables for Solving Vertical Linear Complementarity Problems. Communications on Applied Mathematics and Computation, 2023, 6(4): 2475‒2492 https://doi.org/10.1007/s42967-023-00280-y

References

[1.]
Bai Z-Z. On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl., 1999, 21: 67-78,
CrossRef Google scholar
[2.]
Bai Z-Z. Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl., 2010, 17: 917-933,
CrossRef Google scholar
[3.]
Bensoussan A, Lions JL. . Applications of Variational Inequalities in Stochastic Control, 1982 Amsterdam North-Holland
[4.]
Berman A, Plemmons RJ. . Nonnegative Matrix in the Mathematical Sciences, 1994 Philadelphia SIAM Publisher,
CrossRef Google scholar
[5.]
Cottle RW, Pang J-S, Stone RE. . The Linear Complementarity Problem, 1992 San Diego Academic
[6.]
Cottle RW, Dantzig GB. A generalization of the linear complementarity problem. J. Combin. Theory, 1970, 8: 79-90,
CrossRef Google scholar
[7.]
Fang X-M. Convergence of modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems. Numer. Algorithms, 2022, 90: 931-950,
CrossRef Google scholar
[8.]
Frommer A, Mayer G. Convergence of relaxed parallel multisplitting methods. Linear Algebra Appl., 1989, 119: 141-152,
CrossRef Google scholar
[9.]
Frommer A, Szyld DB. H \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}-splittings and two-stage iterative methods. Numer. Math., 1992, 63: 345-356,
CrossRef Google scholar
[10.]
Fujisawa T, Kuh ES. Piecewise-linear theory of nonlinear networks. SIAM J. Appl. Math., 1972, 22: 307-328,
CrossRef Google scholar
[11.]
Fujisawa T, Kuh ES, Ohtsuki T. A sparse matrix method for analysis of piecewise-linear resistive networks. IEEE Trans. Circuit Theory, 1972, 19: 571-584,
CrossRef Google scholar
[12.]
Gowda MS, Sznajder R. The generalized order linear complementarity problem. SIAM J. Matrix Anal. Appl., 1994, 15: 779-795,
CrossRef Google scholar
[13.]
He J-W, Vong S. A new kind of modulus-based matrix splitting methods for vertical linear complementarity problems. Appl. Math. Lett., 2022, 134,
CrossRef Google scholar
[14.]
Hu J-G. Estimates of ∣ ∣ B - 1 C ∣ ∣ ∞ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mid }{\mid }{B^{-1}C}{\mid }{\mid }_\infty$$\end{document} and their applications. Mathematica Numerica Sinica, 1982, 4: 272-282
[15.]
Ke Y-F, Ma C-F, Zhang H. The modulus-based matrix splitting iteration methods for second-order cone linear complementarity problems. Numer. Algorithms, 2018, 79: 1283-1303,
CrossRef Google scholar
[16.]
Ke Y-F, Ma C-F, Zhang H. The relaxation modulus-based matrix splitting iteration methods for circular cone nonlinear complementarity problems. Comput. Appl. Math., 2018, 37: 6795-6820,
CrossRef Google scholar
[17.]
Li, C.-X., Wu, S.-L.: A class of modulus-based matrix splitting methods for vertical linear complementarity problem. Optim. (to appear). https://doi.org/10.1080/02331934.2022.2069021
[18.]
Mezzadri F. A modulus-based formulation for the vertical linear complementarity problems. Numer. Algorithms, 2022, 90: 1547-1568,
CrossRef Google scholar
[19.]
Oh KP. The formulation of the mixed lubrication problem as a generalized nonlinear complementarity problem. J. Tribol., 1986, 108: 598-604,
CrossRef Google scholar
[20.]
Sznajder R, Gowda MS. Generalizations of P 0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_0$$\end{document}- and P \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document}-properties; extended vertical and horizontal linear complementarity problems. Linear Algebra Appl., 1995, 223(224): 695-715,
CrossRef Google scholar
[21.]
Wu, S.-L., Li, W., Wang, H.-H.: The perturbation bound of the extended vertical linear complementarity problem. J. Oper. Res. Soc. China (in press). https://doi.org/10.1007/s40305-023-00456-6
[22.]
Xia Z-C, Li C-L. Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problem. Appl. Math. Comput., 2015, 271: 34-42
[23.]
Xie S-L, Xu H-R, Zeng J-P. Two-step modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems. Linear Algebra Appl., 2016, 494: 1-10,
CrossRef Google scholar
[24.]
Xu W-W, Zhu L, Peng X-F, Liu H, Yin J-F. A class of modified modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Algorithms, 2020, 85: 1-21,
CrossRef Google scholar
[25.]
Zhang L-L. Two-step modulus based matrix splitting iteration for linear complementarity problems. Numer. Algorithms, 2011, 57: 83-99,
CrossRef Google scholar
[26.]
Zhang L-L. Two-step modulus-based synchronous multisplitting iteration methods for linear complementarity problems. J. Comput. Math., 2015, 33: 100-112,
CrossRef Google scholar
[27.]
Zhang Y-X, Zheng H, Lu X-P, Vong S. A two-step parallel iteration method for large sparse horizontal linear complementarity problems. Appl. Math. Comput., 2023, 438
[28.]
Zheng H, Liu L. A two-step modulus-based matrix splitting iteration method for solving nonlinear complementarity problems of H + \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_+$$\end{document}-matrices. Comput. Appl. Math., 2018, 37(4): 5410-5423,
CrossRef Google scholar
[29.]
Zheng H, Vong S. Improved convergence theorems of the two-step modulus-based matrix splitting and synchronous multisplitting iteration methods for solving linear complementarity problems. Linear Multilinear Algebra, 2019, 67(9): 1773-1784,
CrossRef Google scholar
[30.]
Zheng H, Vong S. A two-step modulus-based matrix splitting iteration method for horizontal linear complementarity problems. Numer. Algorithms, 2021, 86: 1791-1810,
CrossRef Google scholar
Funding
University of Macau(MYRG2020-00035-FST); Scientific Computing Research Innovation Team of Guangdong Province(2021KCXTD052); University of Macau(MYRG2022-00076-FST); Technology Planning Project of Shaoguan(210716094530390); Science Foundation of Shaoguan University(SZ2020KJ01)

Accesses

Citations

Detail

Sections
Recommended

/