An Arbitrarily High Order and Asymptotic Preserving Kinetic Scheme in Compressible Fluid Dynamic

Rémi Abgrall, Fatemeh Nassajian Mojarrad

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (2) : 963-991. DOI: 10.1007/s42967-023-00274-w
Original Paper

An Arbitrarily High Order and Asymptotic Preserving Kinetic Scheme in Compressible Fluid Dynamic

Author information +
History +

Abstract

We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics, both in time and space, which include the relaxation schemes by Jin and Xin. These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case. These kinetic models depend on a small parameter that can be seen as a “Knudsen” number. The method is asymptotic preserving in this Knudsen number. Also, the computational costs of the method are of the same order of a fully explicit scheme. This work is the extension of Abgrall et al. (2022) [3] to multi-dimensional systems. We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.

Keywords

Kinetic scheme / Compressible fluid dynamics / High order methods / Explicit schemes / Asymptotic preserving / Defect correction method

Cite this article

Download citation ▾
Rémi Abgrall, Fatemeh Nassajian Mojarrad. An Arbitrarily High Order and Asymptotic Preserving Kinetic Scheme in Compressible Fluid Dynamic. Communications on Applied Mathematics and Computation, 2023, 6(2): 963‒991 https://doi.org/10.1007/s42967-023-00274-w

References

[1.]
Abgrall R. High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices. J. Sci. Comput., 2017, 73(2): 461-494,
CrossRef Google scholar
[2.]
Abgrall R. Some remarks about conservation for residual distribution schemes. Comput. Methods Appl. Math., 2018, 18(3): 327-351,
CrossRef Google scholar
[3.]
Abgrall R, Torlo D. Some preliminary results on a high order asymptotic preserving computationally explicit kinetic scheme. Commun. Math. Sci, 2022, 20(2): 297-326,
CrossRef Google scholar
[4.]
Aregba-Driollet D, Natalini R. Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Num. Anal., 2000, 37(6): 1973-2004,
CrossRef Google scholar
[5.]
Banda M, Sead M. Relaxation weno schemes for multidimensional hyperbolic systems of conservation laws. Methods Partial Differential Equations, 2007, 23(5): 1211-1234,
CrossRef Google scholar
[6.]
Bhatnagar P, Gross E, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev., 1954, 94: 511-525,
CrossRef Google scholar
[7.]
Boscarino S, Pareschi L, Russo G. Implicit-explicit runge-kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput., 2013, 35(1): 22-51,
CrossRef Google scholar
[8.]
Boscarino S, Russo G. On a class of uniformly accurate imex runge-kutta schemes and applications to hyperbolic systems with relaxation. SIAM J. Sci. Comput., 2009, 31(3): 1926-1945,
CrossRef Google scholar
[9.]
Bouchut F. Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Stat. Phys., 1999, 95: 1-2,
CrossRef Google scholar
[10.]
Cercignani C. . The Boltzmann equation and its applications, 1988 New York Springer-Verlag,
CrossRef Google scholar
[11.]
Coulette D, Franck E, Helluy P, Mehrenberger M, Navoret L. High-order implicit palindromic discontinuous galerkin method for kinetic-relaxation approximation. Comput. Fluids, 2019, 190: 485-502,
CrossRef Google scholar
[12.]
Csomós P, Faragó I. Error analysis of the numerical solution of split differential equations. Math. Comput. Model., 2008, 48(7/8): 1090-1106,
CrossRef Google scholar
[13.]
Dimarco G, Pareschi L. Asymptotic-preserving implicit-explicit runge-kutta methods for nonlinear kinetic equations. SIAM J. Numer. Anal., 2013, 51(2): 1064-1087,
CrossRef Google scholar
[14.]
Diot S, Loubère R, Clain S. The multidimensional optimal order detection method in the three-dimensional case: very high-order finite volume method for hyperbolic systems. Int. J. Numer. Methods Fluids, 2013, 73(4): 362-392,
CrossRef Google scholar
[15.]
Filbet F, Jin S. A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys., 2010, 229(20): 7625-7648,
CrossRef Google scholar
[16.]
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin (2010)
[17.]
Iserles A. Order stars and saturation theorem for first-order hyperbolics. IMA J. Numer. Anal., 1982, 2: 49-61,
CrossRef Google scholar
[18.]
Jin S. Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput., 1999, 21: 441-454,
CrossRef Google scholar
[19.]
Jin S, Xin Z. The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math., 1995, 48(3): 235-276,
CrossRef Google scholar
[20.]
Lafitte P, Melis W, Samaey G. A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws. J. Comput. Phys., 2017, 340: 1-25,
CrossRef Google scholar
[21.]
LeVeque Randall J. Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys., 1997, 131(2): 327-353,
CrossRef Google scholar
[22.]
Natalini R. A discrete kinetic approximation of entropy solution to multi-dimensional scalar conservation laws. J. Differ. Equ, 1998, 148: 292-317,
CrossRef Google scholar
[23.]
Schroll HJ. High resolution relaxed upwind schemes in gas dynamics. J. Sci. Comput., 2002, 17: 599-607,
CrossRef Google scholar
[24.]
Sweby PK. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal., 1984, 21: 995-1011,
CrossRef Google scholar
[25.]
Vilar François. A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite volume formulation and flux reconstruction. J. Comput. Phys., 2019, 387: 245-279,
CrossRef Google scholar
[26.]
Yee, H.C., Warming, R.F., Harten, A.: On a class of TVD schemes for gas dynamic calculations. In: Glowinski, R., Liions, J.-L. (eds) Proc. of the Sixth Int'l. Symposium on Computing Methods in Applied Sciences and Engineering, VI, pp. 491-492. North-Holland Publishing Co., Amsterdam, Netherlands (1985)
Funding
Schweizerischer Nationalfonds zur F?rderung der Wissenschaftlichen Forschung(200020_204917); University of Zurich

Accesses

Citations

Detail

Sections
Recommended

/