Adaptive Sparse Grid Discontinuous Galerkin Method: Review and Software Implementation

Juntao Huang, Wei Guo, Yingda Cheng

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (1) : 501-532. DOI: 10.1007/s42967-023-00268-8
Original Paper

Adaptive Sparse Grid Discontinuous Galerkin Method: Review and Software Implementation

Author information +
History +

Abstract

This paper reviews the adaptive sparse grid discontinuous Galerkin (aSG-DG) method for computing high dimensional partial differential equations (PDEs) and its software implementation. The C++ software package called AdaM-DG, implementing the aSG-DG method, is available on GitHub at https://github.com/JuntaoHuang/adaptive-multiresolution-DG. The package is capable of treating a large class of high dimensional linear and nonlinear PDEs. We review the essential components of the algorithm and the functionality of the software, including the multiwavelets used, assembling of bilinear operators, fast matrix-vector product for data with hierarchical structures. We further demonstrate the performance of the package by reporting the numerical error and the CPU cost for several benchmark tests, including linear transport equations, wave equations, and Hamilton-Jacobi (HJ) equations.

Keywords

Adaptive sparse grid / Discontinuous Galerkin / High dimensional partial differential equation / Software development

Cite this article

Download citation ▾
Juntao Huang, Wei Guo, Yingda Cheng. Adaptive Sparse Grid Discontinuous Galerkin Method: Review and Software Implementation. Communications on Applied Mathematics and Computation, 2023, 6(1): 501‒532 https://doi.org/10.1007/s42967-023-00268-8

References

[1.]
ASGarD—Adaptive Sparse Grid Discretization. https://github.com/project-asgard/asgard. Accessed 18 Oct 2022 (2022)
[2.]
Alpert BK. A class of bases in L \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document} for the sparse representation of integral operators. SIAM J. Math. Anal., 1993, 24(1): 246-262,
CrossRef Google scholar
[3.]
Arnold D. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 1982, 19(4): 742-760,
CrossRef Google scholar
[4.]
Atanasov, A.B., Schnetter, E.: Sparse grid discretizations based on a discontinuous Galerkin method. arXiv:1710.09356 (2017)
[5.]
Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W., et al.: PETSc Users Manual, ANL-95/11-Revision 3.11 (2019). http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
[6.]
Bellman, R.: Adaptive Control Processes: a Guided Tour, vol. 4. Princeton University Press, Princeton (1961)
[7.]
Bokanowski O, Garcke J, Griebel M, Klompmaker I. An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations. J. Sci. Comput., 2013, 55(3): 575-605,
CrossRef Google scholar
[8.]
Bungartz H-J, Griebel M. Sparse grids. Acta Numer., 2004, 13: 147-269,
CrossRef Google scholar
[9.]
Chen A, Li F, Cheng Y. An ultra-weak discontinuous Galerkin method for Schrödinger equation in one dimension. J. Sci. Comput., 2019, 78(2): 772-815,
CrossRef Google scholar
[10.]
Cheng Y, Shu C-W. A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput., 2008, 77(262): 699-730,
CrossRef Google scholar
[11.]
Chou C-S, Shu C-W, Xing Y. Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. J. Comput. Phys., 2014, 272: 88-107,
CrossRef Google scholar
[12.]
Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54(190), 545–581 (1990)
[13.]
D’Azevedo E, Green DL, Mu L. Discontinuous Galerkin sparse grids methods for time domain Maxwell’s equations. Comput. Phys. Commun., 2020, 256,
CrossRef Google scholar
[14.]
Garcke J, Griebel M. . Sparse Grids and Applications, 2013 Berlin Springer,
CrossRef Google scholar
[15.]
Gradinaru V. Fourier transform on sparse grids: code design and the time dependent Schrödinger equation. Computing, 2007, 80(1): 1-22,
CrossRef Google scholar
[16.]
Griebel, M.: Sparse grids and related approximation schemes for higher dimensional problems. In: Proceedings of the Conference on Foundations of Computational Mathematics, Santander, Spain (2005)
[17.]
Griebel M, Hamaekers J. Sparse grids for the Schrödinger equation. ESAIM Math. Modell. Numer. Anal., 2007, 41(02): 215-247,
CrossRef Google scholar
[18.]
Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
[19.]
Guo W, Cheng Y. A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulations. SIAM J. Sci. Comput., 2016, 38(6): A3381-A3409,
CrossRef Google scholar
[20.]
Guo W, Cheng Y. An adaptive multiresolution discontinuous Galerkin method for time-dependent transport equations in multidimensions. SIAM J. Sci. Comput., 2017, 39(6): A2962-A2992,
CrossRef Google scholar
[21.]
Guo, W., Huang, J., Tao, Z., Cheng, Y.: An adaptive sparse grid local discontinuous Galerkin method for Hamilton-Jacobi equations in high dimensions. J. Comput. Phys. 436, 110294 (2021)
[22.]
Huang J, Cheng Y. An adaptive multiresolution discontinuous Galerkin method with artificial viscosity for scalar hyperbolic conservation laws in multidimensions. SIAM J. Sci. Comput., 2020, 42(5): A2943-A2973,
CrossRef Google scholar
[23.]
Huang J, Liu Y, Guo W, Tao Z, Cheng Y. An adaptive multiresolution interior penalty discontinuous Galerkin method for wave equations in second order form. J. Sci. Comput., 2020, 85(1): 1-31,
CrossRef Google scholar
[24.]
Huang J, Liu Y, Liu Y, Tao Z, Cheng Y. A class of adaptive multiresolution ultra-weak discontinuous Galerkin methods for some nonlinear dispersive wave equations. SIAM J. Sci. Comput., 2022, 44(2): A745-A769,
CrossRef Google scholar
[25.]
Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1), 129–155 (2005)
[26.]
Pflüger D. . Spatially Adaptive Sparse Grids for High-Dimensional Problems, 2010 München Verlag Dr. Hut
[27.]
Schwab C, Süli E, Todor R. Sparse finite element approximation of high-dimensional transport-dominated diffusion problems. ESAIM Math. Modell. Numer. Anal., 2008, 42(05): 777-819,
CrossRef Google scholar
[28.]
Shen J, Wang L-L. Sparse spectral approximations of high-dimensional problems based on hyperbolic cross. SIAM J. Numer. Anal., 2010, 48(3): 1087-1109,
CrossRef Google scholar
[29.]
Shen J, Yu H. Efficient spectral sparse grid methods and applications to high-dimensional elliptic problems. SIAM J. Sci. Comput., 2010, 32(6): 3228-3250,
CrossRef Google scholar
[30.]
Shu C-W, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 1988, 77(2): 439-471,
CrossRef Google scholar
[31.]
Tao Z, Huang J, Liu Y, Guo W, Cheng Y. An adaptive multiresolution ultra-weak discontinuous Galerkin method for nonlinear Schrödinger equations. Commun. Appl. Math. Comput., 2022, 4(1): 60-83,
CrossRef Google scholar
[32.]
Tao Z, Jiang Y, Cheng Y. An adaptive high-order piecewise polynomial based sparse grid collocation method with applications. J. Comput. Phys., 2021, 433,
CrossRef Google scholar
[33.]
Wang Z, Tang Q, Guo W, Cheng Y. Sparse grid discontinuous Galerkin methods for high-dimensional elliptic equations. J. Comput. Phys., 2016, 314: 244-263,
CrossRef Google scholar
[34.]
Wanner G, Hairer E. . Solving Ordinary Differential Equations I, 1996 Berlin Springer
[35.]
Yan J, Osher S. A local discontinuous Galerkin method for directly solving Hamilton-Jacobi equations. J. Comput. Phys., 2011, 230(1): 232-244,
CrossRef Google scholar
[36.]
Zenger, C.: Sparse grids. In: Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, vol. 31 (1990)
Funding
National Science Foundation(DMS-2011838); U.S. Air Force(FA9550-18-1-0257)

Accesses

Citations

Detail

Sections
Recommended

/