In this paper, we study systems of conservation laws in one space dimension. We prove that for classical solutions in Sobolev spaces
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s$$\end{document}
, with
s > 3/2, the data-to-solution map is not uniformly continuous. Our results apply to all nonlinear scalar conservation laws and to nonlinear hyperbolic systems of two equations.