Nonuniform Dependence on the Initial Data for Solutions of Conservation Laws

John M. Holmes, Barbara Lee Keyfitz

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (1) : 489-500. DOI: 10.1007/s42967-023-00267-9
Original Paper

Nonuniform Dependence on the Initial Data for Solutions of Conservation Laws

Author information +
History +

Abstract

In this paper, we study systems of conservation laws in one space dimension. We prove that for classical solutions in Sobolev spaces

H s
, with s > 3/2, the data-to-solution map is not uniformly continuous. Our results apply to all nonlinear scalar conservation laws and to nonlinear hyperbolic systems of two equations.

Keywords

Conservation laws / Data-to-solution map / Nonuniform dependence

Cite this article

Download citation ▾
John M. Holmes, Barbara Lee Keyfitz. Nonuniform Dependence on the Initial Data for Solutions of Conservation Laws. Communications on Applied Mathematics and Computation, 2023, 6(1): 489‒500 https://doi.org/10.1007/s42967-023-00267-9

References

[1.]
Adams RA, Fournier JJF. . Sobolev Spaces, 2003 Amsterdam Elsevier/Academic Press
[2.]
Bourgain J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation. Geom. Funct. Anal., 1993, 3(3): 209-262,
CrossRef Google scholar
[3.]
Cockburn B, Shu C-W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp., 1989, 52(186): 411-435
[4.]
Colliander J, Keel M, Staffilani G, Takaoka H, Tao T. Sharp global well-posedness for KdV and modified KdV on R \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} }$$\end{document} and T \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{T} }$$\end{document}. J. Amer. Math. Soc., 2003, 16(3): 705-749,
CrossRef Google scholar
[5.]
Himonas AA, Kenig C. Non-uniform dependence on initial data for the CH equation on the line. Differential Integral Equations, 2009, 22: 201-224,
CrossRef Google scholar
[6.]
Himonas AA, Kenig C, Misiołek G. Non-uniform dependence for the periodic CH equation. Comm. Partial Differential Equations, 2010, 35: 1145-1162,
CrossRef Google scholar
[7.]
Himonas AA, Misiołek G. Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics. Commun. Math. Phys., 2010, 296: 285-301,
CrossRef Google scholar
[8.]
Holmes J, Keyfitz BL, Tığlay F. Nonuniform dependence on initial data for compressible gas dynamics: the Cauchy problem on R 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^2$$\end{document}. SIAM J. Math. Anal, 2018, 50(1): 1237-1254,
CrossRef Google scholar
[9.]
Holmes J, Thompson R, Tiğlay F. Continuity of the data-to-solution map for the FORQ equation in Besov spaces. Differential Integral Equations, 2021, 34(5/6): 295-314,
CrossRef Google scholar
[10.]
Johnson C, Pitkäranta J. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp., 1986, 46(173): 1-26,
CrossRef Google scholar
[11.]
Kato T. The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal., 1975, 58: 181-205,
CrossRef Google scholar
[12.]
Koch H, Tzvetkov N. Nonlinear wave interactions for the Benjamin-Ono equation. Int. Math. Res. Not., 2005, 30: 1833-1847,
CrossRef Google scholar
[13.]
Molinet L, Saut JC, Tzvetkov N. Ill-posedness issues for the Benjamin-Ono and related equations. SIAM J. Math. Anal., 2001, 33(4): 982-988,
CrossRef Google scholar
[14.]
Tao T. Global well-posedness of the Benjamin-Ono equation in H 1 ( R ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1({ R})$$\end{document}. J. Hyperbolic Differ. Equ., 2004, 1(1): 27-49,
CrossRef Google scholar
[15.]
Xing W, Yanghai Yu. Non-uniform continuity of the Fokas-Olver-Rosenau-Qiao equation in Besov spaces. Monatsh. Math., 2022, 197(2): 381-394,
CrossRef Google scholar
[16.]
Yu Y, Yang X. Non-uniform dependence on initial data for the 2D MHD-Boussinesq equations. J. Math. Phys., 2021, 62(12): 121504,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/