A Vertex Network Model of Arabidopsis Leaf Growth

Luke Andrejek, Janet Best, Ching-Shan Chou, Aman Husbands

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (1) : 454-488. DOI: 10.1007/s42967-023-00265-x
Original Paper

A Vertex Network Model of Arabidopsis Leaf Growth

Author information +
History +

Abstract

Biology provides many examples of complex systems whose properties allow organisms to develop in a highly reproducible, or robust, manner. One such system is the growth and development of flat leaves in Arabidopsis thaliana. This mechanistically challenging process results from multiple inputs including gene interactions, cellular geometry, growth rates, and coordinated cell divisions. To better understand how this complex genetic and cellular information controls leaf growth, we developed a mathematical model of flat leaf production. This two-dimensional model describes the gene interactions in a vertex network of cells which grow and divide according to physical forces and genetic information. Interestingly, the model predicts the presence of an unknown additional factor required for the formation of biologically realistic gene expression domains and iterative cell division. This two-dimensional model will form the basis for future studies into robustness of adaxial-abaxial patterning.

Keywords

Robustness / Adaxial-abaxial patterning / Mathematical modeling / Gene regulatory networks (GRNs) / Transcription factors / Small RNAs

Cite this article

Download citation ▾
Luke Andrejek, Janet Best, Ching-Shan Chou, Aman Husbands. A Vertex Network Model of Arabidopsis Leaf Growth. Communications on Applied Mathematics and Computation, 2023, 6(1): 454‒488 https://doi.org/10.1007/s42967-023-00265-x

References

[1.]
Andrejek L, Chou C-S, Husbands AY. A robust mathematical model of adaxial-abaxial patterning. In silico Plants, 2021, 3(1): diaa015,
CrossRef Google scholar
[2.]
Center, O. S.: Ohio supercomputer center (1987)
[3.]
Chou C-S, Friedman A. . Introduction to Mathematical Biology, 2016 New York Springer,
CrossRef Google scholar
[4.]
Fox S, Southam P, Pantin F, Kennaway R, Robinson S, Castorina G, Sánchez-Corrales YE, Sablowski R, Chan J, Grieneisen V, et al.. Spatiotemporal coordination of cell division and growth during organ morphogenesis. PLoS Biol., 2018, 16(11),
CrossRef Google scholar
[5.]
Fukushima K, Fujita H, Yamaguchi T, Kawaguchi M, Tsukaya H, Hasebe M. Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea. Nat. Commun., 2015, 6(1): 1-10,
CrossRef Google scholar
[6.]
Galvan-Ampudia CS, Cerutti G, Legrand J, Brunoud G, Martin-Arevalillo R, Azais R, Bayle V, Moussu S, Wenzl C, Jaillais Y, et al.. Temporal integration of auxin information for the regulation of patterning. Elife, 2020, 9,
CrossRef Google scholar
[7.]
Gelman A, Gilks WR, Roberts GO. Weak convergence and optimal scaling of random walk metropolis algorithms. Ann. Appl. Probab., 1997, 7(1): 110-120,
CrossRef Google scholar
[8.]
Gonze D, Abou-Jaoudé W. The Goodwin model: behind the Hill function. PloS One, 2013, 8(8): e69573,
CrossRef Google scholar
[9.]
Groenenboom MAC, Marée AFM, Hogeweg P. The RNA silencing pathway: the bits and pieces that matter. PLoS Comput. Biol., 2005, 1(2),
CrossRef Google scholar
[10.]
Hayakawa Y, Tachikawa M, Mochizuki A. Flat leaf formation realized by cell-division control and mutual recessive gene regulation. J. Theor. Biol., 2016, 404: 206-214,
CrossRef Google scholar
[11.]
Husbands AY, Benkovics AH, Nogueira FT, Lodha M, Timmermans MC. The asymmetric leaves complex employs multiple modes of regulation to affect adaxial-abaxial patterning and leaf complexity. Plant Cell, 2015, 27(12): 3321-3335,
CrossRef Google scholar
[12.]
Kierzkowski D, Runions A, Vuolo F, Strauss S, Lymbouridou R, Routier-Kierzkowska A-L, Wilson-Sánchez D, Jenke H, Galinha C, Mosca G, et al.. A growth-based framework for leaf shape development and diversity. Cell, 2019, 177(6): 1405-1418,
CrossRef Google scholar
[13.]
LeVeque, R. J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, Vol. 98. SIAM (2007)
[14.]
Merelo P, Ram H, Pia Caggiano M, Ohno C, Ott F, Straub D, Graeff M, Cho SK, Yang SW, Wenkel S, et al.. Regulation of MIR165/166 by class II and class III homeodomain leucine zipper proteins establishes leaf polarity. Proc. Natl. Acad. Sci., 2016, 113(42): 11973-11978,
CrossRef Google scholar
[15.]
Murray JD. . Mathematical Biology: I. An Introduction, 2007 Berlin Springer Science & Business Media
[16.]
Nagai T, Honda H. A dynamic cell model for the formation of epithelial tissues. Philos. Mag. B, 2001, 81(7): 699-719,
CrossRef Google scholar
[17.]
Nakata M, Matsumoto N, Tsugeki R, Rikirsch E, Laux T, Okada K. Roles of the middle domain-specific Wuschel-related homeobox genes in early development of leaves in Arabidopsis. Plant Cell, 2012, 24(2): 519-535,
CrossRef Google scholar
[18.]
Pekker I, Alvarez JP, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of Kanadi activity. Plant Cell, 2005, 17(11): 2899-2910,
CrossRef Google scholar
[19.]
Poethig R, Sussex I. The developmental morphology and growth dynamics of the tobacco leaf. Planta, 1985, 165(2): 158-169,
CrossRef Google scholar
[20.]
Scanlon MJ, Schneeberger RG, Freeling M. The maize mutant narrow sheath fails to establish leaf margin identity in a meristematic domain. Development, 1996, 122(6): 1683-1691,
CrossRef Google scholar
[21.]
Skopelitis DS, Benkovics AH, Husbands AY, Timmermans MC. Boundary formation through a direct threshold-based readout of mobile small RNA gradients. Dev. Cell, 2017, 43(3): 265-273,
CrossRef Google scholar
[22.]
Smith AF, Roberts GO. Bayesian computation via the Gibbs sampler and related Markov chain monte Carlo methods. J. Roy. Stat. Soc. B, 1993, 55(1): 3-23,
CrossRef Google scholar
[23.]
Sorenson RS, Deshotel MJ, Johnson K, Adler FR, Sieburth LE. Arabidopsis mRNA decay landscape arises from specialized RNA decay substrates, decapping-mediated feedback, and redundancy. Proc. Natl. Acad. Sci., 2018, 115(7): E1485-E1494,
CrossRef Google scholar
[24.]
Valdez-Taubas J, Pelham HR. Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr. Biol., 2003, 13(18): 1636-1640,
CrossRef Google scholar
[25.]
Van Ravenzwaaij D, Cassey P, Brown SD. A simple introduction to Markov chain Monte-Carlo sampling. Psychonomic Bull. Rev., 2018, 25(1): 143-154,
CrossRef Google scholar
[26.]
Volkening A, Sandstede B. Iridophores as a source of robustness in zebrafish stripes and variability in danio patterns. Nat. Commun., 2018, 9(1): 1-14,
CrossRef Google scholar
[27.]
Wu G, Lin W-C, Huang T, Poethig RS, Springer PS, Kerstetter RA. Kanadi1 regulates adaxial-abaxial polarity in Arabidopsis by directly repressing the transcription of asymmetric leaves2. Proc. Natl. Acad. Sci., 2008, 105(42): 16392-16397,
CrossRef Google scholar
[28.]
Zhang L, Radtke K, Zheng L, Cai AQ, Schilling TF, Nie Q. Noise drives sharpening of gene expression boundaries in the zebrafish hindbrain. Mol. Syst. Biol., 2012, 8(1): 613,
CrossRef Google scholar
[29.]
Zhang Z, Runions A, Mentink RA, Kierzkowski D, Karady M, Hashemi B, Huijser P, Strauss S, Gan X, Ljung K, et al.. A WOX/auxin biosynthesis module controls growth to shape leaf form. Curr. Biol., 2020, 30(24): 4857-4868,
CrossRef Google scholar
[30.]
Zhao F, Du F, Oliveri H, Zhou L, Ali O, Chen W, Feng S, Wang Q, S, Long M, et al.. Microtubule-mediated wall anisotropy contributes to leaf blade flattening. Curr. Biol., 2020, 30(20): 3972-3985,
CrossRef Google scholar
[31.]
Zhu H, Hu F, Wang R, Zhou X, Sze S-H, Liou LW, Barefoot A, Dickman M, Zhang X. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell, 2011, 145(2): 242-256,
CrossRef Google scholar
Funding
Division of Integrative Organismal Systems(2039489); Division of Mathematical Sciences(1813071)

Accesses

Citations

Detail

Sections
Recommended

/