Exponential Time Differencing Method for a Reaction- Diffusion System with Free Boundary

Shuang Liu, Xinfeng Liu

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (1) : 354-371. DOI: 10.1007/s42967-023-00261-1

Exponential Time Differencing Method for a Reaction- Diffusion System with Free Boundary

Author information +
History +

Abstract

For reaction-diffusion equations in irregular domains with moving boundaries, the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes, while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary. It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties. Applying an implicit scheme may be able to remove the stability constraints on the time step, however, it usually requires solving a large global system of nonlinear equations for each time step, and the computational cost could be significant. Integration factor (IF) or exponential time differencing (ETD) methods are one of the popular methods for temporal partial differential equations (PDEs) among many other methods. In our paper, we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries. In particular, we rewrite all ETD schemes into a linear combination of specific

ϕ
-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications, which offers significant computational advantages with adaptive Krylov subspaces. In addition, we extend this method by incorporating the level set method to solve the free boundary problem. The accuracy, stability, and efficiency of the developed method are demonstrated by numerical examples.

Keywords

Reaction diffusion equations / Free boundary / Integrating factor method / Level set method

Cite this article

Download citation ▾
Shuang Liu, Xinfeng Liu. Exponential Time Differencing Method for a Reaction- Diffusion System with Free Boundary. Communications on Applied Mathematics and Computation, 2023, 6(1): 354‒371 https://doi.org/10.1007/s42967-023-00261-1

References

[1.]
Al-Mohy AH, Higham NJ. Computing the action of the matrix exponential with an application to exponential integrators. SIAM J. Sci. Comput., 2011, 33(2): 488-511
[2.]
Apel T, Sändig AM, Whiteman JR. Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Mathemat. Methods Appl. Sci., 1996, 19(1): 63-85
[3.]
Aslam TD. A partial differential equation approach to multidimensional extrapolation. J. Comput. Phys., 2004, 193(1): 349-355
[4.]
Barnett, G.A.: A robust RBF-FD formulation based on polyharmonic splines and polynomials. PhD Thesis. Citeseer (2015)
[5.]
Beylkin G, Keiser JM, Vozovoi L. A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys., 1998, 147: 362-387
[6.]
Braess D. The contraction number of a multigrid method for solving the Poisson equation. Numer. Math., 1981, 37(3): 387-404
[7.]
Bunting G, Du Y, Krakowski K. Spreading speed revisited: analysis of a free boundary model. Net. Heterog. Med., 2012, 7(4): 583
[8.]
Burrage K, Butcher JC. Stability criteria for implicit Runge-Kutta methods. SIAM J. Numer. Anal., 1979, 16(1): 46-57
[9.]
Buzbee BL, Dorr FW, George JA, Golub GH. The direct solution of the discrete Poisson equation on irregular regions. SIAM J. Numer. Anal., 1971, 8(4): 722-736
[10.]
Caffarelli, L.A., Salsa, S.: A Geometric Approach to Free Boundary Problems, volume 68. American Mathematical Society, Providence, RI (2005)
[11.]
Caliari Marco, Kandolf Peter, Ostermann Alexander, Rainer Stefan. The Leja method revisited: backward error analysis for the matrix exponential. SIAM J. Sci. Comput., 2016, 38(3): A1639-A1661
[12.]
Cao Yiding, Faghri Amir, Chang Won Soon. A numerical analysis of Stefan problems for generalized multi-dimensional phase-change structures using the enthalpy transforming model. Intern. J. Heat. Mass. Trans., 1989, 32(7): 1289-1298
[13.]
Chen H, Min C, Gibou F. A numerical scheme for the stefan problem on adaptive Cartesian grids with supralinear convergence rate. J. Comput. Phys., 2009, 228(16): 5803-5818
[14.]
Chen S, Merriman B, Osher S , Smereka P. A simple level set method for solving Stefan problems. J. Comput. Phys., 1997, 135(1): 8-29
[15.]
Cox SM, Matthews PC. Exponential time differencing for stiff systems. J. Comput. Phys., 2002, 176(2): 430-455
[16.]
Du Q, Ju L, Li X, Qiao Z. Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes. SIAM Rev., 2021, 63(2): 317-359
[17.]
Du Q, Zhu W. Stability analysis and applications of the exponential time differencing schemes. J. Comput. Mathemat., 2004, 22: 200
[18.]
Du Q, Zhu W. Modified exponential time differencing schemes: analysis and applications.. BIT. Numer. Math., 2005, 45: 307-328
[19.]
Du Y, Lin Z.. Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal., 2010, 42(1): 377-405
[20.]
Du Y, Matano H, Wang K. Regularity and asymptotic behavior of nonlinear Stefan problems. Archive Rat. Mech. Anal., 2014, 212(3): 957-1010
[21.]
Franke Richard. Scattered data interpolation: tests of some methods. Math. Comput., 1982, 38(157): 181-200
[22.]
Gaudreault S, Pudykiewicz JA. An efficient exponential time integration method for the numerical solution of the shallow water equations on the sphere. J. Comput. Phys., 2016, 322: 827-848
[23.]
Gibou F, Fedkiw R. A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem. J. Comput. Phys., 2005, 202(2): 577-601
[24.]
Gibou F, Fedkiw RP, Cheng LT, Kang M. A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys., 2002, 176(1): 205-227
[25.]
Hairer E, Wanner G. Stiff differential equations solved by Radau methods. J. Comput. Appl. Math., 1999, 111(1/2): 93-111
[26.]
Hardy RL. Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res., 1971, 76(8): 1905-1915
[27.]
Hochbruck M, Lubich C. On krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal., 1997, 34(5): 1911-1925
[28.]
Hou TY, Lowengrub JS, Shelley MJ. Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys., 1994, 114: 312-338
[29.]
Jiang GS, Peng D. Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput., 2000, 21(6): 2126-2143
[30.]
Jiang K, Ju L, Li J, Li X. Unconditionally stable exponential time differencing schemes for the mass-conserving Allen-Cahn equation with nonlocal and local effects. Numer. Methods Partial Differential Equations, 2021, 38(6): 1636-1657
[31.]
Johansen H, Colella P. A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J. Comput. Phys., 1998, 147(1): 60-85
[32.]
Jomaa Z, Macaskill C. The embedded finite difference method for the Poisson equation in a domain with an irregular boundary and Dirichlet boundary conditions. J. Comput. Phys., 2005, 202(2): 488-506
[33.]
Jou HJ, Leo PH, Lowengrub JS. Microstructual evolution in inhomogeneous elastic media. J. Comput. Phys., 1997, 131: 109
[34.]
Kassam A-K, Trefethen LN. Fourth-order time stepping for stiff PDEs. SIAM J. Sci. Comput., 2005, 26: 1214-1233
[35.]
Kreiss H-O, Petersson NA. A second order accurate embedded boundary method for the wave equation with Dirichlet data. SIAM J. Sci. Comput., 2006, 27: 1141-1167
[36.]
Kreiss H-O, Petersson NA, Yström J. Difference approximations for the second order wave equation. SIAM J. Numer. Anal., 2002, 40(5): 1940-1967
[37.]
Kreiss H-O, Petersson NA, Yström J. Difference approximations of the Neumann problem for the second order wave equation. SIAM J. Numer. Anal., 2004, 42(3): 1292-1323
[38.]
Lai MC. A note on finite difference discretizations for Poisson equation on a disk. Numer. Methods Partial Differential Equations , 2001, 17(3): 199-203
[39.]
Leo PH, Lowengrub JS, Nie Qing. Microstructural evolution in orthotropic elastic media. J. Comput. Phys., 2000, 157: 44-88
[40.]
Li J, Ju L, Cai Y, Feng X. Unconditionally maximum bound principle preserving linear schemes for the conservative Allen-Cahn equation with nonlocal constraint. J. Sci. Comput., 2021, 87(3): 1-32
[41.]
Liu, S.: Numerical methods for a class of reaction-diffusion equations with free boundaries. PhD Thesis. University of South Carolina (2019)
[42.]
Liu XD, Fedkiw RP, Kang M. A boundary condition capturing method for Poisson’s equation on irregular domains. J. Comput. Phys., 2000, 160(1): 151-178
[43.]
Louis A. Acceleration of convergence for finite element solutions of the Poisson equation. Numer. Math., 1979, 33(1): 43-53
[44.]
Lowrie RB. A comparison of implicit time integration methods for nonlinear relaxation and diffusion. J. Comput. Phys., 2004, 196(2): 566-590
[45.]
Luan VT, Pudykiewicz JA, Reynolds DR. Further development of efficient and accurate time integration schemes for meteorological models. J. Comput. Phys., 2019, 376: 817-837
[46.]
Min C, Gibou F, Ceniceros HD. A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids. J. Comput. Phys., 2006, 218(1): 123-140
[47.]
Ng YT, Chen H, Min C, Gibou F. Guidelines for Poisson solvers on irregular domains with Dirichlet boundary conditions using the ghost fluid method. J. Sci. Comput., 2009, 41(2): 300-320
[48.]
Niesen J, Wright WM. Algorithm 919: a Krylov subspace algorithm for evaluating the ϕ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-functions appearing in exponential integrators. ACM Trans. Math. Soft. (TOMS), 2012, 38(3): 1-19
[49.]
Oevermann M, Klein R. A Cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces. J. Comput. Phys., 2006, 219(2): 749-769
[50.]
Osher S., Fedkiw RP. Level set methods: an overview and some recent results. J. Comput. Phys., 2001, 169(2): 463-502
[51.]
Osher, S., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer Verlag, New York (2002)
[52.]
Peng D, Merriman B, Osher S, Zhao H, Kang M. A PDE-based fast local level set method. J. Comput. Phys., 1999, 155(2): 410-438
[53.]
Peng, Z., Appelö, D., Liu, S.: Universal AMG accelerated embedded boundary method without small cell stiffness. arXiv:2204.06083 (2022)
[54.]
Perrone N, Kao R. A general finite difference method for arbitrary meshes. Comput. Struct., 1975, 5(1): 45-57
[55.]
Piqueras M-A, Company R, Jódar L. A front-fixing numerical method for a free boundary nonlinear diffusion logistic population model. J. Comput. Appl. Math., 2017, 309: 473-481
[56.]
Rubinshteĭ, L.I.: The Stefan Problem. American Mathematical Society (1971)
[57.]
Sethian JA. Fast marching methods. SIAM Rev., 1999, 41(2): 199-235
[58.]
Sudicky EA. The Laplace transform Galerkin technique: a time-continuous finite element theory and application to mass transport in groundwater. Wat. Res. Res., 1989, 25(8): 1833-1846
[59.]
Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys., 1994, 114(1): 146-159
[60.]
Tayler AB. Free and moving boundary problems. by J. Crank. Clarendon, Oxford, 1984. 425 pp. £ 45.00. J. Fluid Mech., 1985, 158: 532-533
[61.]
Yoon G., Min C.. Analyses on the finite difference method by Gibou, et al. for Poisson equation. J. Comput. Phys., 2015, 280: 184-194
[62.]
Zapata MAU, Hernández-López FJ. A GPU parallel finite volume method for a 3D Poisson equation on arbitrary geometries. Intern. J. Comb. Optimizat. Prob. Inform., 2018, 9(1): 3
Funding
National Science Foundation(1853365)

Accesses

Citations

Detail

Sections
Recommended

/