Iterative Subregion Correction Preconditioners with Adaptive Tolerance for Problems with Geometrically Localized Stiffness

Michael Franco, Per-Olof Persson, Will Pazner

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (2) : 811-836. DOI: 10.1007/s42967-023-00254-0
Original Paper

Iterative Subregion Correction Preconditioners with Adaptive Tolerance for Problems with Geometrically Localized Stiffness

Author information +
History +

Abstract

We present a class of preconditioners for the linear systems resulting from a finite element or discontinuous Galerkin discretizations of advection-dominated problems. These preconditioners are designed to treat the case of geometrically localized stiffness, where the convergence rates of iterative methods are degraded in a localized subregion of the mesh. Slower convergence may be caused by a number of factors, including the mesh size, anisotropy, highly variable coefficients, and more challenging physics. The approach taken in this work is to correct well-known preconditioners such as the block Jacobi and the block incomplete LU (ILU) with an adaptive inner subregion iteration. The goal of these preconditioners is to reduce the number of costly global iterations by accelerating the convergence in the stiff region by iterating on the less expensive reduced problem. The tolerance for the inner iteration is adaptively chosen to minimize subregion-local work while guaranteeing global convergence rates. We present analysis showing that the convergence of these preconditioners, even when combined with an adaptively selected tolerance, is independent of discretization parameters (e.g., the mesh size and diffusion coefficient) in the subregion. We demonstrate significant performance improvements over black-box preconditioners when applied to several model convection-diffusion problems. Finally, we present performance results of several variations of iterative subregion correction preconditioners applied to the Reynolds number

2.25 × 10 6
fluid flow over the NACA 0012 airfoil, as well as massively separated flow at
30
angle of attack.

Keywords

Subregion correction / Nested Krylov / Geometrically localized stiffness

Cite this article

Download citation ▾
Michael Franco, Per-Olof Persson, Will Pazner. Iterative Subregion Correction Preconditioners with Adaptive Tolerance for Problems with Geometrically Localized Stiffness. Communications on Applied Mathematics and Computation, 2023, 6(2): 811‒836 https://doi.org/10.1007/s42967-023-00254-0

References

[1.]
Alexander R. Diagonally implicit Runge-Kutta methods for stiff ODE’s. SIAM J. Numer. Anal., 1977, 14(6): 1006-1021,
CrossRef Google scholar
[2.]
Anderson R, et al.. MFEM: a modular finite element methods library. Comput. Math. Appl., 2021, 81: 42-74,
CrossRef Google scholar
[3.]
Antonietti PF, Houston P. A class of domain decomposition preconditioners for hp \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$hp$$\end{document}-discontinuous Galerkin finite element methods. J. Sci. Comput., 2011, 46(1): 124-149,
CrossRef Google scholar
[4.]
Berger MJ, Colella P. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys., 1989, 82(1): 64-84,
CrossRef Google scholar
[5.]
Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial. SIAM, Philadelphia (2000). https://doi.org/10.1137/1.9780898719505
[6.]
Cai XC. . Some domain decomposition algorithms for nonselfadjoint elliptic and parabolic partial differential equations, 1989 New York PhD thesis, New York University
[7.]
Cockburn B, Shu C-W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal., 1998, 35(6): 2440-2463,
CrossRef Google scholar
[8.]
Constantinescu EM, Sandu A. Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comput., 2007, 33(3): 239-278,
CrossRef Google scholar
[9.]
D’Azevedo EF, Forsyth PA, Tang W-P. Ordering methods for preconditioned conjugate gradient methods applied to unstructured grid problems. SIAM J. Matrix Anal. Appl., 1992, 13(3): 944-961,
CrossRef Google scholar
[10.]
Desjardins B, Grenier E, Lions P-L, Masmoudi N. Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. Journal de Mathématiques Pures et Appliquées, 1999, 78(5): 461-471,
CrossRef Google scholar
[11.]
Falgout, R.D., Yang, U.M.: hypre: A library of high performance preconditioners. In: International Conference on Computational Science, pp. 632–641. Springer (2002). https://doi.org/10.1007/3-540-47789-6_66.
[12.]
Fernandez, P., Nguyen, N.-C., Peraire, J.: On the ability of discontinuous Galerkin methods to simulate under-resolved turbulent flows. Preprint at https://doi.org/10.48550/ARXIV.1810.09435 (2018)
[13.]
Golub GH, Ye Q. Inexact preconditioned conjugate gradient method with inner-outer iteration. SIAM J. Sci. Comput., 1999, 21(4): 1305-1320,
CrossRef Google scholar
[14.]
Griebel M, Oswald P. On the abstract theory of additive and multiplicative Schwarz algorithms. Numerische Mathematik, 1995, 70(2): 163-180,
CrossRef Google scholar
[15.]
Heil M, Hazel AL, Boyle J. Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches. Comput. Mech., 2008, 43(1): 91-101,
CrossRef Google scholar
[16.]
Huang DZ, Persson P-O, Zahr MJ. High-order, linearly stable, partitioned solvers for general multiphysics problems based on implicit-explicit Runge-Kutta schemes. Comput. Methods Appl. Mech. Eng., 2019, 346: 674-706,
CrossRef Google scholar
[17.]
Jourdan de Araujo Jorge Filho, E., Wang, Z.J.: A study of p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-multigrid approach for the high order FR/CPR method. In: AIAA Aviation 2019 Forum (2019). https://doi.org/10.2514/6.2019-3711
[18.]
Kanevsky A, Carpenter MH, Gottlieb D, Hesthaven JS. Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes. J. Comput. Phys., 2007, 225(2): 1753-1781,
CrossRef Google scholar
[19.]
Karabelas SJ. Large eddy simulation of high-Reynolds number flow past a rotating cylinder. Int. J. Heat Fluid Flow, 2010, 31(4): 518-527,
CrossRef Google scholar
[20.]
Knupp PM. Algebraic mesh quality metrics. SIAM J. Sci. Comput., 2001, 23(1): 193-218,
CrossRef Google scholar
[21.]
Krivodonova L. An efficient local time-stepping scheme for solution of nonlinear conservation laws. J. Comput. Phys., 2010, 229(22): 8537-8551,
CrossRef Google scholar
[22.]
Nguyen, C., Terrana, S., Peraire, J.: Wall-resolved implicit large eddy simulation of transonic buffet over the OAT15A airfoil using a discontinuous Galerkin method. In: AIAA Scitech 2020 Forum (2020). https://doi.org/10.2514/6.2020-2062
[23.]
Pazner, W., Franco, M., Persson, P.-O.: High-order wall-resolved large eddy simulation of transonic buffet on the OAT15A airfoil. In: AIAA Scitech 2019 Forum (2019). https://doi.org/10.2514/6.2019-1152
[24.]
Pazner W, Persson P-O. Stage-parallel fully implicit Runge-Kutta solvers for discontinuous Galerkin fluid simulations. J. Comput. Phys., 2017, 335: 700-717,
CrossRef Google scholar
[25.]
Pazner W, Persson P-O. Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods. J. Comput. Phys., 2018, 354: 344-369,
CrossRef Google scholar
[26.]
Peraire J, Persson P-O. The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput., 2008, 30(4): 1806-1824,
CrossRef Google scholar
[27.]
Persson, P.-O.: High-order LES simulations using implicit-explicit Runge-Kutta schemes. In: 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2011). https://doi.org/10.2514/6.2011-684
[28.]
Persson P-O, Peraire J. Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-Stokes equations. SIAM J. Sci. Comput., 2008, 30(6): 2709-2733,
CrossRef Google scholar
[29.]
Roe PL. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 1981, 43(2): 357-372,
CrossRef Google scholar
[30.]
Saad Y. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput., 1993, 14(2): 461-469,
CrossRef Google scholar
[31.]
Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, Philadelphia (2003). https://doi.org/10.1137/1.9780898718003
[32.]
Saad Y, Zhang J. BILUM: block versions of multielimination and multilevel ILU preconditioner for general sparse linear systems. SIAM J. Sci. Comput., 1999, 20(6): 2103-2121,
CrossRef Google scholar
[33.]
Sato, M., Okada, K., Nonomura, T., Aono, H., Yakeno, A., Asada, K., Abe, Y., Fujii, K.: Massive parametric study by LES on separated-flow control around airfoil using DBD plasma actuator at Reynolds number 63,000. In: 43rd AIAA Fluid Dynamics Conference (2013). https://doi.org/10.2514/6.2013-2750
[34.]
Sundar, H., Biros, G., Burstedde, C., Rudi, J., Ghattas, O., Stadler, G.: Parallel geometric-algebraic multigrid on unstructured forests of octrees. In: SC ’12: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pp. 1–11. IEEE (2012). https://doi.org/10.1109/SC.2012.91
[35.]
Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory, vol. 34. Springer, Heidelberg (2005). https://doi.org/10.1007/b137868
[36.]
Uranga A, Persson P-O, Drela M, Peraire J. Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method. Int. J. Numer. Methods Eng., 2011, 87(1/2/3/4/5): 232-261,
CrossRef Google scholar
[37.]
Van Den Eshof J, Sleijpen GL, van Gijzen MB. Relaxation strategies for nested Krylov methods. J. Comput. Appl. Math., 2005, 177(2): 347-365,
CrossRef Google scholar
[38.]
Wanner, G., Hairer, E.: Solving Ordinary Differential Equations II, vol. 375. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-642-05221-7
[39.]
Yang UM, et al.. BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math., 2002, 41(1): 155-177,
CrossRef Google scholar
Funding
Lawrence Livermore National Laboratory(LDRD 20-ERD-002)

Accesses

Citations

Detail

Sections
Recommended

/