Remapping Between Meshes with Isoparametric Cells: a Case Study

Mikhail Shashkov, Konstantin Lipnikov

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (3) : 1551-1574. DOI: 10.1007/s42967-023-00250-4
Original Paper

Remapping Between Meshes with Isoparametric Cells: a Case Study

Author information +
History +

Abstract

We explore an intersection-based remap method between meshes consisting of isoparametric elements. We present algorithms for the case of serendipity isoparametric elements (QUAD8 elements) and piece-wise constant (cell-centered) discrete fields. We demonstrate convergence properties of this remap method with a few numerical experiments.

Keywords

Isoparametric meshes / Data transfer / Ramapping

Cite this article

Download citation ▾
Mikhail Shashkov, Konstantin Lipnikov. Remapping Between Meshes with Isoparametric Cells: a Case Study. Communications on Applied Mathematics and Computation, 2023, 6(3): 1551‒1574 https://doi.org/10.1007/s42967-023-00250-4

References

[1.]
Anderson R, Dobrev V, Kolev T, Rieben R. Monotonicity in high-order curvilinear finite element arbitrary Lagrangian-Eulerian remap. Int. J. Numer. Meth. Fluids, 2015, 77: 249-273,
CrossRef Google scholar
[2.]
Anderson R, Dobrev V, Kolev T, Rieben R, Tomov V. High-order multi-material ALE hydrodynamics. SIAM J. Sci. Comp., 2018, 40(1): B32-B58,
CrossRef Google scholar
[3.]
Arnold DN, Awanou G. The serendipity family of finite elements. Found. Comput. Math., 2011, 11: 337-344,
CrossRef Google scholar
[4.]
Barnhill R, Farin G, Jordan M, Piper B. Surface/surface intersection. Comput. Aided Geom. Des., 1987, 4(1/2): 3-16,
CrossRef Google scholar
[5.]
Boutin B, Deriaz E, Hoch P, Navaro P. Extension of ALE methodology to unstructured conical meshes. ESAIM: Procs., 2011, 22: 31-55,
CrossRef Google scholar
[6.]
Dobrev V, Kolev T, Rieben R. High-order curvilinear finite element methods for Lagrangian hydrodynamics. SIAM J. Sci. Comput., 2012, 34(5): 606-641,
CrossRef Google scholar
[7.]
Dukowicz J, Kodis J. Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations. SIAM J. Stat. Comput., 1987, 8: 305-321,
CrossRef Google scholar
[8.]
Ergatoudis I, Irons B, Zienkiewicz O. Curved, isoparametric, quadrilateral elements for finite element analysis. Int. J. Solids Struct., 1968, 4: 31-42,
CrossRef Google scholar
[9.]
Gillette A, Kloefkorn T. Trimmed serendipity finite element differential forms. Math. Comput., 2019, 88(316): 583-606,
CrossRef Google scholar
[10.]
Kenamond M, Kuzmin D, Shashkov M. Intersection-distribution-based remapping between arbitrary meshes for staggered multi-material arbitrary Lagrangian-Eulerian hydrodynamics. J. Comput. Phys., 2021, 429,
CrossRef Google scholar
[11.]
Lieberman E, Liu X, Morgan N, Lusher D, Burton D. A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for solid dynamics. Comput. Methods Appl. Mech. Engrg., 2019, 353: 467-490,
CrossRef Google scholar
[12.]
Lipnikov K, Morgan N. Conservative high-order discontinuous Galerkin remap scheme on curvilinear polyhedral meshes. J. Comput. Phys., 2020, 420,
CrossRef Google scholar
[13.]
Lipnikov, K., Shashkov, M.: Conservative high-order data transfer method on generalized polygonal meshes. Technical Report LA-UR-22-26391, Los Alamos National Laboratory (2022)
[14.]
Loubère R, Ovadia J, Abgrall R. A Lagrangian discontinuous Galerkin-type method on unstructured meshes to solve hydrodynamics problems. Int. J. Numer. Meth. Fluids, 2004, 44: 645-663,
CrossRef Google scholar
[15.]
Margolin L, Shashkov M. Second-order sign-preserving conservative interpolation (remapping) on general grids. J. Comput. Phys., 2003, 184(1): 266-298,
CrossRef Google scholar
[16.]
Mosso, S., Burton, D.: A second-order two- and three-dimensional remap method. Technical Report LA-UR-98-5353, Los Alamos National Laboratory (1998)
[17.]
Shashkov M, Wendroff B. The repair paradigm and application to conservation laws. J. Comput. Phys., 2004, 198: 265-277,
CrossRef Google scholar
[18.]
Vacarro, J., Lipnikov, K.: Applying an oriented divergence theorem to swept face remap. Technical Report LA-UR-22-28731, Los Alamos National Laboratory (2022)
[19.]
Velechovsky J, Kikinzon E, Navamita R, Rakotoarivelo H, Herring A, Kenamond M, Lipnikov K, Shashkov M, Garimella R, Shevitz D. Multi-material swept face remapping on polyhedral meshes. J. Comput. Phys., 2022, 469: 111553,
CrossRef Google scholar
[20.]
Warsaw, S.: Area of intersection of arbitrary polygons. Technical Report UCID-17430, Report of Lawrence Livermore National Laboratory. Available at https://www.osti.gov/servlets/purl/7309916 (1977)
Funding
Office of Defense Nuclear Security(89233218CNA000001)

Accesses

Citations

Detail

Sections
Recommended

/