A DG Method for the Stokes Equations on Tensor Product Meshes with

[ P k ] d - P k - 1
Element

Lin Mu, Xiu Ye, Shangyou Zhang, Peng Zhu

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (4) : 2431-2454. DOI: 10.1007/s42967-022-00243-9
Original Paper

A DG Method for the Stokes Equations on Tensor Product Meshes with

[ P k ] d - P k - 1
Element

Author information +
History +

Abstract

We consider the mixed discontinuous Galerkin (DG) finite element approximation of the Stokes equation and provide the analysis for the

[ P k ] d - P k - 1
element on the tensor product meshes. Comparing to the previous stability proof with
[ Q k ] d - Q k - 1
discontinuous finite elements in the existing references, our first contribution is to extend the formal proof to the
[ P k ] d - P k - 1
discontinuous elements on the tensor product meshes. Numerical inf-sup tests have been performed to compare
Q k
and
P k
types of elements and validate the well-posedness in both settings. Secondly, our contribution is to design the enhanced pressure-robust discretization by only modifying the body source assembling on
[ P k ] d - P k - 1
schemes to improve the numerical simulation further. The produced numerical velocity solution via our enhancement shows viscosity and pressure independence and thus outperforms the solution produced by standard discontinuous Galerkin schemes. Robustness analysis and numerical tests have been provided to validate the scheme’s robustness.

Keywords

Finite element / Discontinuous Galerkin (DG) method / Tensor product mesh / Enhancement of pressure-robustness

Cite this article

Download citation ▾
Lin Mu, Xiu Ye, Shangyou Zhang, Peng Zhu. A DG Method for the Stokes Equations on Tensor Product Meshes with
[ P k ] d - P k - 1
Element. Communications on Applied Mathematics and Computation, 2023, 6(4): 2431‒2454 https://doi.org/10.1007/s42967-022-00243-9

References

[1.]
Al-Taweel A, Wang X. A note on the optimal degree of the weak gradient of the stabilizer free weak Galerkin finite element method. Appl. Numer. Math., 2020, 150: 444-451,
CrossRef Google scholar
[2.]
Baker GA, Jureidini WN, Karakashian OA. Piecewise solenoidal vector fields and the Stokes problem. SIAM J. Numer. Anal., 1990, 27: 1466-1485,
CrossRef Google scholar
[3.]
Brennecke C, Linke A, Merdon C, Schöberl J. Optimal and pressure-independent L 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM reconstructions. J. Comput. Math., 2015, 33: 191-208,
CrossRef Google scholar
[4.]
Brezzi, F., Boffi, D., Demkowicz, L., Durán, R.G., Falk, R.S., Fortin, M.M.: Mixed finite elements, compatibility conditions, and applications. Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 26–July 1, 2008. Springer, Berlin (2008)
[5.]
Brezzi F, Falk RS. Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal., 1991, 28: 581-590,
CrossRef Google scholar
[6.]
Brezzi F, Fortin M. . Mixed and Hybrid Finite Elements, 1991 New York Springer,
CrossRef Google scholar
[7.]
Chapelle D, Bathe KJ. The inf-sup test. Comput. Struct., 1993, 47: 537-545,
CrossRef Google scholar
[8.]
Chen L, Wang M, Zhong L. Convergence analysis of triangular MAC schmes for two dimensional Stokes equations. J. Sci. Comput., 2015, 63: 716-744,
CrossRef Google scholar
[9.]
Cockburn B, Kanschat G, Schötzau D. A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput., 2007, 31: 61-73,
CrossRef Google scholar
[10.]
Cockburn B, Kanschat G, Schötzau D, Schwab C. Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal., 2002, 40: 319-343,
CrossRef Google scholar
[11.]
Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. ESAIM: M2AN. 7, 33–75 (1973)
[12.]
Falk R, Neilan M. Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal., 2013, 51: 1308-1326,
CrossRef Google scholar
[13.]
Gallistl, D.: Computation of the inf-sup constant for the divergence. Proc. Appl. Math. Mech. 18 (2018). https://doi.org/10.1002/pamm.201800093
[14.]
Girault V, Raviart P. . Finite Element Methods for the Navier-Stokes Equations: Theory and Algorithms, 1986 Berlin Springer,
CrossRef Google scholar
[15.]
Guzmán J, Neilan M. Conforming and divergence free Stokes elements on general triangular meshes. Math. Comp., 2014, 83: 15-36,
CrossRef Google scholar
[16.]
Guzmán J, Neilan M. Conforming and divergence-free Stokes elements in three dimensions. IMA J. Numer. Anal., 2014, 34: 1489-1508,
CrossRef Google scholar
[17.]
Hansbo P, Larson MG. Discontinuous finite element methods for incompressible and nearly incompressible elasticity by use of Nitsche’s method. Comput. Methods Appl. Mech. Eng., 2002, 191: 1895-1908,
CrossRef Google scholar
[18.]
Jenkins E, John V, Linke A, Rebholz L. On the parameter choice in grad-div stabilization for the Stokes equations. Adv. Comput. Math., 2014, 40: 491-516,
CrossRef Google scholar
[19.]
John V, Linke A, Merdon C, Neilan M, Rebholz L. On the divergence constraint in mixed finite element mehtods for incompressible flows. SIAM Rev., 2017, 59: 492-544,
CrossRef Google scholar
[20.]
Karakashian OA, Jureidini WN. A nonconforming finite element method for the stationary Navier-Stokes equations. SIAM J. Numer. Anal., 1998, 35: 93-120,
CrossRef Google scholar
[21.]
Lederer, P.: Pressure-robust discretizations for Navier-Stokes equations: divergence-free reconstruction for Taylor-Hood elements and high order hybrid discontinuous Galerkin methods, master’s thesis, Vienna Technical University (2016)
[22.]
Lederer P, Schöberl J. Polynomial robust stability analysis for h(div)-conforming finite elements for the Stokes equations. IMA J. Numer. Anal., 2018, 38: 1832-1860,
CrossRef Google scholar
[23.]
Linke A. A divergence-free velocity reconstruction for incompressible flows. C. R. Math. Acad. Sci. Paris, 2012, 350: 837-840,
CrossRef Google scholar
[24.]
Linke A. On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng., 2014, 268: 782-800,
CrossRef Google scholar
[25.]
Linke, A., Matthies, G., Tobiska, L.: Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors. ESAIM: M2AN 50, 289–309 (2016)
[26.]
Mu L, Wang X, Ye X. A modified weak Galerkin finite element method for the Stokes equations. J. Comput. Appl. Math., 2015, 275: 79-90,
CrossRef Google scholar
[27.]
Mu L. Pressure robust weak Galerkin finite element methods for Stokes problems. SIAM J. Sci. Comput., 2020, 42: B608-B629,
CrossRef Google scholar
[28.]
Mu L, Ye X, Zhang S. A stabilizer-free, pressure-robust, and superconvergence weak Galerkin finite element method for the Stokes equations on polytopal mesh. SIAM J. Sci. Comput., 2014, 43(4): A2614-A2637,
CrossRef Google scholar
[29.]
Mu, L., Ye, X., Zhang, S.: Development of pressure-robust discontinuous Galerkin finite element methods for the Stokes problem. J. Sci. Comput. 89 (2021)
[30.]
Olshanskii M, Olshanskii A. Grad-div stabilization for Stokes equations. Math. Comp., 2004, 73: 1699-1718,
CrossRef Google scholar
[31.]
Olshanskii M, Lube G, Heister T, Löwe J. Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng., 2009, 198: 3975-3988,
CrossRef Google scholar
[32.]
Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Soc. Ind. Appl. Math, Philadelphia (2008)
[33.]
Schötzau D, Schwab C, Toselli A. Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal., 2002, 40: 2171-2194,
CrossRef Google scholar
[34.]
Schötzau D, Schwab C, Toselli A. Stabilized hp-DGFEM for incompressible flow. Math. Models Methods Appl. Sci., 2003, 13: 1413-1436,
CrossRef Google scholar
[35.]
Schötzau D, Schwab C, Toselli A. Mixed hp-DGFEM for incompressible flows II: geometric edge meshes. IMA J. Numer. Anal., 2004, 24: 273-308,
CrossRef Google scholar
[36.]
Scott, L., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. ESAIM: M2AN 19, 111–143 (1985)
[37.]
Toselli A. hp-discontinuous Galerkin approximations for the Stokes problem. Math. Models Methods Appl. Sci., 2002, 12: 1565-1597,
CrossRef Google scholar
[38.]
Wang J, Ye X. New finite element methods in computational fluid dynamics by H(div) elements. SIAM J. Numer. Anal., 2007, 45: 1269-1286,
CrossRef Google scholar
[39.]
Zhang S. A new family of stable mixed finite elements for 3D Stokes equations. Math. Comp., 2005, 74: 543-554,
CrossRef Google scholar
[40.]
Zhang S. On the P1 Powell-Sabin divergence-free finite element for the Stokes equations. J. Comput. Math., 2008, 26: 456-470
[41.]
Zhang S. Divergence-free finite elements on tetrahedral grids for k ⩽ 6 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\leqslant 6$$\end{document}. Math. Comp., 2011, 80: 669-695,
CrossRef Google scholar
[42.]
Zhang S. Quadratic divergence-free finite elements on Powell-Sabin tetrahedral grids-. Calcolo, 2011, 48: 211-244,
CrossRef Google scholar
Funding
Simons Foundation(964995)

Accesses

Citations

Detail

Sections
Recommended

/