Review of Computational Approaches to Optimization Problems in Inhomogeneous Rods and Plates

Weitao Chen, Chiu-Yen Kao

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (1) : 236-256. DOI: 10.1007/s42967-022-00242-w
Review

Review of Computational Approaches to Optimization Problems in Inhomogeneous Rods and Plates

Author information +
History +

Abstract

In this paper, we review computational approaches to optimization problems of inhomogeneous rods and plates. We consider both the optimization of eigenvalues and the localization of eigenfunctions. These problems are motivated by physical problems including the determination of the extremum of the fundamental vibration frequency and the localization of the vibration displacement. We demonstrate how an iterative rearrangement approach and a gradient descent approach with projection can successfully solve these optimization problems under different boundary conditions with different densities given.

Keywords

Inhomogeneous rods and plates / Bi-Laplacian / Optimization of eigenvalues / Localization of eigenfunctions / Rearrangement

Cite this article

Download citation ▾
Weitao Chen, Chiu-Yen Kao. Review of Computational Approaches to Optimization Problems in Inhomogeneous Rods and Plates. Communications on Applied Mathematics and Computation, 2023, 6(1): 236‒256 https://doi.org/10.1007/s42967-022-00242-w

References

[1.]
Anedda C, Cuccu F, Porru G. Minimization of the first eigenvalue in problems involving the bi-Laplacian. Revista de Mat. Teor. Apl., 2009, 16(1): 127-136
[2.]
Arnold DN, David G, Filoche M, Jerison D, Mayboroda S. Localization of eigenfunctions via an effective potential. Comm. Partial Differ. Equ., 2019, 44(11): 1186-1216,
CrossRef Google scholar
[3.]
Bakharev F, Matveenko S. Localization of eigenfunctions in a narrow Kirchhoff plate. Russ. J. Math. Phys., 2021, 28(2): 156-178,
CrossRef Google scholar
[4.]
Banks DO. Bounds for the eigenvalues of some vibrating systems. Pac. J. Math., 1960, 10(2): 439-474,
CrossRef Google scholar
[5.]
Banks DO. Bounds for the eigenvalues of nonhomogeneous hinged vibrating rods. J. Math. Mech., 1967, 16: 949-966
[6.]
Beesack PR. Isoperimetric inequalities for the nonhomogeneous clamped rod and plate. J. Math. Mech, 1959, 8: 471-482
[7.]
Bjørstad PE, Tjøstheim BP. High precision solutions of two fourth order eigenvalue problems. Computing, 1999, 63(2): 97-107,
CrossRef Google scholar
[8.]
Brenner SC, Monk P, Sun J. C 0 interior penalty Galerkin method for biharmonic eigenvalue problems. Spectral and high order methods for partial differential equations ICOSAHOM 2014, 2015 Switzerland Springer 3-15,
CrossRef Google scholar
[9.]
Chen W, Chou C-S, Kao C-Y. Minimizing eigenvalues for inhomogeneous rods and plates. J. Sci. Comput., 2016, 69(3): 983-1013,
CrossRef Google scholar
[10.]
Chen W, Diest K, Kao C-Y, Marthaler DE, Sweatlock LA, Osher S. Gradient based optimization methods for metamaterial design. Numerical Methods for Metamaterial Design, 2013 Dordrecht Springer 175-204,
CrossRef Google scholar
[11.]
Chladni EFF. . Die Akustik, 1802 Leipzig Breitkopf & Härtel
[12.]
Ciarlet PG, Raviart P-A. A mixed finite element method for the biharmonic equation. Mathematical Aspects of Finite Elements in Partial Differential Equations, 1974 New York Academic Press 125-145,
CrossRef Google scholar
[13.]
Colasuonno F, Vecchi E. Symmetry in the composite plate problem. Commun. Contemp. Math., 2019, 21(02): 1850019,
CrossRef Google scholar
[14.]
Cuccu F, Emamizadeh B, Porru G. Optimization of the first eigenvalue in problems involving the bi-Laplacian. Proceed. Am. Math. Soc., 2009, 137(5): 1677-1687,
CrossRef Google scholar
[15.]
Cuccu F, Porru G. Maximization of the first eigenvalue in problems involving the bi-Laplacian. Nonlinear Anal. Theory Methods Appl., 2009, 71(12): 800-809,
CrossRef Google scholar
[16.]
Dobson DC, Santosa F. Optimal localization of eigenfunctions in an inhomogeneous medium. SIAM J. Appl. Math., 2004, 64(3): 762-774,
CrossRef Google scholar
[17.]
Elishakoff I. . Eigenvalues of Inhomogeneous Structure. Unusual Closed-Form Solutions, 2004 Boca Raton CRC Press,
CrossRef Google scholar
[18.]
Gander MJ, Kwok F. Chladni figures and the Tacoma bridge: motivating PDE eigenvalue problems via vibrating plates. SIAM Rev., 2012, 54(3): 573-596,
CrossRef Google scholar
[19.]
Gautschi W. Leonhard Euler: his life, the man, and his works. SIAM Rev., 2008, 50(1): 3-33,
CrossRef Google scholar
[20.]
Henrot A. . Extremum Problems for Eigenvalues of Elliptic Operators, 2006 Basel-Boston-Berlin Springer,
CrossRef Google scholar
[21.]
Kao C-Y, Su S. Efficient rearrangement algorithms for shape optimization on elliptic eigenvalue problems. J. Sci. Comput., 2013, 54(2/3): 492-512,
CrossRef Google scholar
[22.]
Kirchhoff G. Über das gleichgewicht und die bewegung einer elastischen scheibe. J. Die Reine Angew. Math. (Crelles Journal), 1850, 1850(40): 51-88,
CrossRef Google scholar
[23.]
Krein MG. . On Certain Problems on the Maximum and Minimum of Characteristic Values and on the Lyapunov Zones of Stability, 1955 Boston American Mathematical Society translations. American Mathematical Society,
CrossRef Google scholar
[24.]
Kropinski M, Lindsay A, Ward M. Asymptotic analysis of localized solutions to some linear and nonlinear biharmonic eigenvalue problems. Stud. Appl. Math., 2011, 126(4): 347-408,
CrossRef Google scholar
[25.]
Lagrange, J.-L.: Sur la figure des colonnes. Miscellanea Taurinensia 5, 123–166 (1770)
[26.]
Lamberti PD, Provenzano L. A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations. ArXiv Prepr., 2012,
CrossRef Google scholar
[27.]
Leissa AW. . Vibration of Plates, 1969 National Aeronautics and Space Adminstration, Washington, D.C. Scientific and Technical Information Division
[28.]
Lindsay AE, Quaife B, Wendelberger L. A boundary integral equation method for mode elimination and vibration confinement in thin plates with clamped points. Adv. Comput. Math., 2018, 44(4): 1249-1273,
CrossRef Google scholar
[29.]
Meng J, Mei L. The optimal order convergence for the lowest order mixed finite element method of the biharmonic eigenvalue problem. J. Comput. Appl. Math., 2022, 402,
CrossRef Google scholar
[30.]
Mohammadi S, Bahrami F. Extremal principal eigenvalue of the bi-Laplacian operator. Appl. Math. Model., 2016, 40(3): 2291-2300,
CrossRef Google scholar
[31.]
Monk P. A mixed finite element method for the biharmonic equation. SIAM J. Numer. Anal., 1987, 24(4): 737-749,
CrossRef Google scholar
[32.]
Nazarov SA, Sweers G. A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners. J. Differential Equations, 2007, 233(1): 151-180,
CrossRef Google scholar
[33.]
Schwarz B. Some results on the frequencies of nonhomogeneous rods. J. Math. Anal. Appl., 1962, 5(2): 169-175,
CrossRef Google scholar
[34.]
Stöckmann H-J. Chladni meets Napoleon. Eur. Phys. J. Spec. Top., 2007, 145(1): 15-23,
CrossRef Google scholar
[35.]
Wang CY, Wang C. . Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates, 2013 Boca Raton CRC Press
Funding
Division of Mathematical Sciences(MS-1853701)

Accesses

Citations

Detail

Sections
Recommended

/