A Well-Balanced Active Flux Method for the Shallow Water Equations with Wetting and Drying

Wasilij Barsukow, Jonas P. Berberich

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (4) : 2385-2430. DOI: 10.1007/s42967-022-00241-x
Original Paper

A Well-Balanced Active Flux Method for the Shallow Water Equations with Wetting and Drying

Author information +
History +

Abstract

Active Flux is a third order accurate numerical method which evolves cell averages and point values at cell interfaces independently. It naturally uses a continuous reconstruction, but is stable when applied to hyperbolic problems. In this work, the Active Flux method is extended for the first time to a nonlinear hyperbolic system of balance laws, namely, to the shallow water equations with bottom topography. We demonstrate how to achieve an Active Flux method that is well-balanced, positivity preserving, and allows for dry states in one spatial dimension. Because of the continuous reconstruction all these properties are achieved using new approaches. To maintain third order accuracy, we also propose a novel high-order approximate evolution operator for the update of the point values. A variety of test problems demonstrates the good performance of the method even in presence of shocks.

Keywords

Finite volume methods / Active Flux / Shallow water equations / Dry states / Well-balanced methods

Cite this article

Download citation ▾
Wasilij Barsukow, Jonas P. Berberich. A Well-Balanced Active Flux Method for the Shallow Water Equations with Wetting and Drying. Communications on Applied Mathematics and Computation, 2023, 6(4): 2385‒2430 https://doi.org/10.1007/s42967-022-00241-x

References

[1.]
Audusse E, Bouchut F, Bristeau M-O, Klein R, Perthame B. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput., 2004, 25(6): 2050-2065,
CrossRef Google scholar
[2.]
Barré de Saint-Venant AJCB. Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et á l’introduction des marées dans leur lit. C. R. Acad. Sci. Paris Sér. I Math, 1871, 53: 147-154
[3.]
Barsukow W. The active flux scheme for nonlinear problems. J. Sci. Comput., 2021, 86(1): 1-34,
CrossRef Google scholar
[4.]
Barsukow W, Berberich JP, Klingenberg C. On the active flux scheme for hyperbolic PDEs with source terms. SIAM J. Sci. Comput., 2021, 43(6): A4015-A4042,
CrossRef Google scholar
[5.]
Barsukow W, Hohm J, Klingenberg C, Roe PL. The active flux scheme on Cartesian grids and its low Mach number limit. J. Sci. Comput., 2019, 81(1): 594-622,
CrossRef Google scholar
[6.]
Barsukow W, Klingenberg C. Exact solution and a truly multidimensional Godunov scheme for the acoustic equations. ESAIM: M2AN, 2022, 56(1): 317-347,
CrossRef Google scholar
[7.]
Berberich JP, Chandrashekar P, Klingenberg C. High order well-balanced finite volume methods for multi-dimensional systems of hyperbolic balance laws. Comput. Fluids, 2021, 219: 104858,
CrossRef Google scholar
[8.]
Bermudez A, Vázquez E. Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids, 1994, 23(8): 1049-1071,
CrossRef Google scholar
[9.]
Bollermann A, Chen G, Kurganov A, Noelle S. A well-balanced reconstruction of wet/dry fronts for the shallow water equations. J. Sci. Comput., 2013, 56(2): 267-290,
CrossRef Google scholar
[10.]
Bollermann A, Noelle S, Lukáčová-Medvid’ová M. Finite volume evolution Galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys., 2011, 10(2): 371-404,
CrossRef Google scholar
[11.]
Bouchut F. . Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, 2004 Berlin Springer Science & Business Media,
CrossRef Google scholar
[12.]
Carrier GF, Wu TT, Yeh H. Tsunami run-up and draw-down on a plane beach. J. Fluid Mech., 2003, 475: 79-99,
CrossRef Google scholar
[13.]
Castro MJ, González-Vida JM, Parés C. Numerical treatment of wet/dry fronts in shallow flows with a modified Roe scheme. Math. Models Methods Appl. Sci., 2006, 16(06): 897-931,
CrossRef Google scholar
[14.]
Castro MJ, Semplice M. Third- and fourth-order well-balanced schemes for the shallow water equations based on the CWENO reconstruction. Int. J. Numer. Methods Fluids, 2019, 89(8): 304-325,
CrossRef Google scholar
[15.]
Cheng Y, Chertock A, Herty M, Kurganov A, Wu T. A new approach for designing moving-water equilibria preserving schemes for the shallow water equations. J. Sci. Comput., 2019, 80(1): 538-554,
CrossRef Google scholar
[16.]
Chinnayya A, LeRoux A-Y, Seguin N. A well-balanced numerical scheme for the approximation of the shallow-water equations with topography: the resonance phenomenon. Int. J. Finite, 2004, 1(1): 1-33
[17.]
Cozzolino L, Della Morte R, Del Giudice G, Palumbo A, Pianese D. A well-balanced spectral volume scheme with the wetting-drying property for the shallow-water equations. J. Hydroinform., 2012, 14(3): 745-760,
CrossRef Google scholar
[18.]
Eymann, T.A.: Active flux schemes. PhD thesis. University of Michigan, MI, USA (2013)
[19.]
Eymann, T.A., Roe, P.L.: Active flux schemes for systems. In: Proceedings of the 20th AIAA Computational Fluid Dynamics Conference, AIAA 2011-3840, AIAA (2011)
[20.]
Eymann, T.A., Roe, P.L.: Multidimensional active flux schemes. In: Proceedings of the 21st AIAA Computational Fluid Dynamics Conference, AIAA 2013-2940, AIAA (2013)
[21.]
Fan, D.: On the acoustic component of active flux schemes for nonlinear hyperbolic conservation laws. PhD thesis. University of Michigan, MI, USA (2017)
[22.]
Gallardo JM, Parés C, Castro M. On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys., 2007, 227(1): 574-601,
CrossRef Google scholar
[23.]
Gallouët T, Hérard J-M, Seguin N. Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids, 2003, 32(4): 479-513,
CrossRef Google scholar
[24.]
Gosse L. A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math. Models Methods Appl. Sci., 2001, 11(02): 339-365,
CrossRef Google scholar
[25.]
Helzel C, Kerkmann D, Scandurra L. A new ADER method inspired by the active flux method. J. Sci. Comput., 2019, 80(3): 1463-1497,
CrossRef Google scholar
[26.]
Kurganov A. Finite-volume schemes for shallow-water equations. Acta Numer., 2018, 27: 289-351,
CrossRef Google scholar
[27.]
Kurganov A, Levy D. Central-upwind schemes for the Saint-Venant system. ESAIM: Math. Model. Numer. Anal., 2002, 36(3): 397-425,
CrossRef Google scholar
[28.]
LeVeque RJ. Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys., 1998, 146(1): 346-365,
CrossRef Google scholar
[29.]
Parés C, Castro M. On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems. ESAIM: Math. Model. Numer. Anal., 2004, 38(5): 821-852,
CrossRef Google scholar
[30.]
Pareschi L, Rey T. Residual equilibrium schemes for time dependent partial differential equations. Comput. Fluids, 2017, 156: 329-342,
CrossRef Google scholar
[31.]
Ricchiuto M, Bollermann A. Stabilized residual distribution for shallow water simulations. J. Comput. Phys., 2009, 228(4): 1071-1115,
CrossRef Google scholar
[32.]
Roe P. Designing CFD methods for bandwidth—a physical approach. Comput. Fluids, 2021, 214,
CrossRef Google scholar
[33.]
Roe, P.L.: Upwind differencing schemes for hyperbolic conservation laws with source terms. In: Nonlinear Hyperbolic Problems, pp. 41–51. Springer, Berlin (1987)
[34.]
Roe, P.L., Lung, T., Maeng, J.: New approaches to limiting. In: Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference, AIAA 2015-2913, AIAA (2015)
[35.]
Rogers BD, Borthwick AGL, Taylor PH. Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver. J. Comput. Phys., 2003, 192(2): 422-451,
CrossRef Google scholar
[36.]
Thacker WC. Some exact solutions to the nonlinear shallow-water wave equations. J. Fluid Mech., 1981, 107: 499-508,
CrossRef Google scholar
[37.]
van Leer B. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys., 1977, 23(3): 276-299,
CrossRef Google scholar
[38.]
Vater, S., Behrens, J.: Well-balanced inundation modeling for shallow-water flows with discontinuous Galerkin schemes. In: Finite Volumes for Complex Applications VII—Elliptic, Parabolic and Hyperbolic Problems, pp. 965–973. Springer, Berlin (2014)
[39.]
Xing Y, Shu C-W. High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys., 2005, 208(1): 206-227,
CrossRef Google scholar
[40.]
Xing Y, Shu C-W. High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys., 2006, 214(2): 567-598,
CrossRef Google scholar
[41.]
Xing Y, Shu C-W. High-order finite volume WENO schemes for the shallow water equations with dry states. Adv. Water Resour., 2011, 34(8): 1026-1038,
CrossRef Google scholar
[42.]
Xing Y, Shu C-W. A survey of high order schemes for the shallow water equations. J. Math. Study, 2014, 47(3): 221-249,
CrossRef Google scholar
[43.]
Xing Y, Zhang X, Shu C-W. Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour., 2010, 33(12): 1476-1493,
CrossRef Google scholar
[44.]
Xu K. A well-balanced gas-kinetic scheme for the shallow-water equations with source terms. J. Comput. Phys., 2002, 178(2): 533-562,
CrossRef Google scholar
[45.]
Zhang X, Shu C-W. On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys., 2010, 229(23): 8918-8934,
CrossRef Google scholar
[46.]
Zhou JG, Causon DM, Mingham CG, Ingram DM. The surface gradient method for the treatment of source terms in the shallow-water equations. J. Comput. Phys., 2001, 168(1): 1-25,
CrossRef Google scholar
Funding
DFG(429491391); Klaus Tschira Stiftung

Accesses

Citations

Detail

Sections
Recommended

/