Mathematical Modeling of Cell Polarity Establishment of Budding Yeast

Yue Liu, Jun Xie, Hay-Oak Park, Wing-Cheong Lo

Communications on Applied Mathematics and Computation ›› 2023, Vol. 6 ›› Issue (1) : 218-235. DOI: 10.1007/s42967-022-00240-y
Review Article

Mathematical Modeling of Cell Polarity Establishment of Budding Yeast

Author information +
History +

Abstract

The budding yeast Saccharomyces cerevisiae is a powerful model system for studying the cell polarity establishment. The cell polarization process is regulated by signaling molecules, which are initially distributed in the cytoplasm and then recruited to a proper location on the cell membrane in response to spatial cues or spontaneously. Polarization of these signaling molecules involves complex regulation, so the mathematical models become a useful tool to investigate the mechanism behind the process. In this review, we discuss how mathematical modeling has shed light on different regulations in the cell polarization. We also propose future applications for the mathematical modeling of cell polarization and morphogenesis.

Keywords

Budding yeast / Cdc42 / Morphogenesis / Septin / Mathematical models

Cite this article

Download citation ▾
Yue Liu, Jun Xie, Hay-Oak Park, Wing-Cheong Lo. Mathematical Modeling of Cell Polarity Establishment of Budding Yeast. Communications on Applied Mathematics and Computation, 2023, 6(1): 218‒235 https://doi.org/10.1007/s42967-022-00240-y

References

[1.]
Adams AE, Johnson DI, Longnecker RM, Sloat BF, Pringle John R. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J. Cell Biol., 1990, 111(1): 131-142
[2.]
Altschuler SJ, Angenent SB, Wang Y, Lani FW. On the spontaneous emergence of cell polarity. Nature, 2008, 454(7206): 886-889
[3.]
Banavar SP, Trogdon M, Drawert B, Yi T-M, Petzold LR, Campàs O. Coordinating cell polarization and morphogenesis through mechanical feedback. PLoS Comput. Biol., 2021, 17(1)
[4.]
Bi E, Park H-O. Cell polarization and cytokinesis in budding yeast. Genetics, 2012, 191(2): 347-387
[5.]
Brinkmann F, Mercker M, Richter T, Marciniak-Czochra A. Post-Turing tissue pattern formation: advent of mechanochemistry. PLoS Comput. Biol., 2018, 14(7): 1-21
[6.]
Bryant DM, Mostov KE. From cells to organs: building polarized tissue. Nat. Rev. Mol. Cell Biol., 2008, 9(11): 887-901
[7.]
Caviston JP, Longtine M, Pringle JR, Bi E. The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. Mol. Biol. Cell, 2003, 14(10): 4051-4066
[8.]
Champneys AR, Saadi FA, Breña-Medina VF, Grieneisen VA, Marée AFM, Verschueren N, Wuyts B. Bistability, wave pinning and localisation in natural reaction-diffusion systems. Phys. D, 2021, 416: 132735
[9.]
Chiou J-G, Ramirez SA, Elston TC, Witelski TP, Schaeffer DG, Lew DJ. Principles that govern competition or co-existence in Rho-GTPase driven polarization. PLoS Comput. Biol., 2018, 14(4): 1-23
[10.]
Choi S-C, Han J-K. Xenopus Cdc42 regulates convergent extension movements during gastrulation through Wnt/Ca2+ signaling pathway. Dev. Biol., 2002, 244(2): 342-357
[11.]
Chollet J, Dünkler A, Bäuerle A, Vivero-Pol L, Mulaw MA, Gronemeyer T, Johnsson N. Cdc24 interacts with septins to create a positive feedback loop during bud site assembly in yeast. J. Cell Sci., 2020, 133(11): jcs240283
[12.]
Clay L, Caudron F, Denoth-Lippuner A, Boettcher B, Frei SB, Snapp EL, Barral Y. A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. Life, 2014, 3: e01883
[13.]
Cusseddu D, Edelstein-Keshet L, Mackenzie JA, Portet S, Madzvamuse A. A coupled bulk-surface model for cell polarisation. J. Theor. Biol., 2019, 481: 119-135
[14.]
Davis EE, Katsanis N. Cell polarization defects in early heart development. Circ. Res., 2007, 101(2): 122-124
[15.]
Diekmann D, Brill S, Garrett MD, Totty N, Hsuan J, Monfries C, Hall C, Lim L, Hall A. Bcr encodes a GTPase-activating protein for p21rac. Nature, 1991, 351(6325): 400-402
[16.]
Dobbelaere J, Gentry MS, Hallberg RL, Barral Y. Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev. Cell, 2003, 4(3): 345-357
[17.]
Etienne-Manneville S. Cdc42-the centre of polarity. J. Cell Sci., 2004, 117(8): 1291-1300
[18.]
Ewers H, Tada T, Petersen JD, Racz B, Sheng M, Choquet D. A septin-dependent diffusion barrier at dendritic spine necks. PLoS One, 2014, 9(12)
[19.]
Finger FP, Kopish KR, White JG. A role for septins in cellular and axonal migration in C. elegans. Dev. Biol., 2003, 261(1): 220-234
[20.]
Gibson MA, Bruck J. Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A, 2000, 104(9): 1876-1889
[21.]
Giese W, Eigel M, Westerheide S, Engwer C, Klipp E. Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models. Phys. Biol., 2015, 12(6)
[22.]
Gillespie DT. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 1976, 22(4): 403-434
[23.]
Gladfelter AS, Pringle JR, Lew DJ. The septin cortex at the yeast mother-bud neck. Curr. Opin. Microbiol., 2001, 4(6): 681-689
[24.]
Glise B, Noselli S. Coupling of Jun amino-terminal kinase and Decapentaplegic signaling pathways in Drosophila morphogenesis. Genes Dev., 1997, 11(13): 1738-1747
[25.]
Goryachev AB, Leda M. Many roads to symmetry breaking: molecular mechanisms and theoretical models of yeast cell polarity. Mol. Biol. Cell, 2017, 28(3): 370-380
[26.]
Goryachev AB, Pokhilko AV. Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Lett., 2008, 582(10): 1437-1443
[27.]
Harden N, Loh HY, Chia W, Lim L. A dominant inhibitory version of the small GTP-binding protein Rac disrupts cytoskeletal structures and inhibits developmental cell shape changes in Drosophila. Development, 1995, 121(3): 903-914
[28.]
Hart MJ, Eva A, Evans T, Aaronson SA, Cerione RA. Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbloncogene product. Nature, 1991, 354(6351): 311-314
[29.]
Howell AS, Jin M, Chi-Fang W, Zyla TR, Elston TC, Lew DJ. Negative feedback enhances robustness in the yeast polarity establishment circuit. Cell, 2012, 149(2): 322-333
[30.]
Howell AS, Savage NS, Johnson SA, Bose I, Wagner AW, Zyla TR, Frederik NH, Reed MC, Goryachev AB, Lew DJ. Singularity in polarization: rewiring yeast cells to make two buds. Cell, 2009, 139(4): 731-743
[31.]
Hsu CL, Muerdter CP, Knickerbocker AD, Walsh RM, Zepeda-Rivera MA, Depner KH, Sangesland M, Cisneros TB, Kim JY, Sanchez-Vazquez P, Cherezova L, Regan RD, Bahrami NM, Gray EA, Chan AY, Chen T, Rao MY, Hille MB. Cdc42 GTPase and Rac1 GTPase act downstream of p120 catenin and require GTP exchange during gastrulation of zebrafish mesoderm. Dev. Dyn., 2012, 241(10): 1545-1561
[32.]
Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, James Nelson W. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science, 2010, 329(5990): 436-439
[33.]
Iwase M, Luo J, Nagaraj S, Longtine M, Kim HB, Haarer BK, Caruso C, Tong Z, Pringle JR, Bi E. Role of a Cdc42p effector pathway in recruitment of the yeast septins to the presumptive bud site. Mole. Biol. Cell, 2006, 17(3): 1110-1125
[34.]
Jilkine A, Angenent SB, Wu LF, Altschuler SJ. A density-dependent switch drives stochastic clustering and polarization of signaling molecules. PLoS Comput. Biol., 2011, 7(11)
[35.]
Johnson DI, Pringle JR. Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J. Cell Biol., 1990, 111(1): 143-152
[36.]
Kozubowski L, Larson JR, Tatchell K. Role of the septin ring in the asymmetric localization of proteins at the mother-bud neck in Saccharomyces cerevisiae. Mol. Biol. Cell, 2005, 16(8): 3455-3466
[37.]
Kozubowski L, Saito K, Johnson JM, Howell AS, Zyla TR, Lew DJ. Symmetry-breaking polarization driven by a Cdc42p GEF-PAK complex. Curr. Biol., 2008, 18(22): 1719-1726
[38.]
Kwitny S, Klaus AV, Hunnicutt GR. The annulus of the mouse sperm tail is required to establish a membrane diffusion barrier that is engaged during the late steps of spermiogenesis. Biol. Reprod., 2010, 82(4): 669-678
[39.]
Lawson MJ, Drawert B, Khammash M, Petzold L, Yi T-M. Spatial stochastic dynamics enable robust cell polarization. PLoS Comput. Biol., 2013, 9(7): 1-12
[40.]
Lee ME, Lo W-C, Miller KE, Chou C-S, Park H-O. Regulation of Cdc42 polarization by the Rsr1 GTPase and Rga1, a Cdc42 GTPase-activating protein, in budding yeast. J. Cell Sci., 2015, 128(11): 2106-2117
[41.]
Liu Y, Lo W-C. Analysis of spontaneous emergence of cell polarity with delayed negative feedback. Math. Biosci. Eng., 2019, 16(3): 1392-1413
[42.]
Liu Y, Lo W-C. Deterministic and stochastic analysis for different types of regulations in the spontaneous emergence of cell polarity. Chaos, Solitons and Fractals, 2021, 144
[43.]
Lo W-C, Lee ME, Narayan M, Chou C-S, Pak H-O. Polarization of diploid daughter cells directed by spatial cues and GTP hydrolysis of Cdc42 in budding yeast. PLoS One, 2013, 8(2): 1-14
[44.]
Lo W-C, Park H-O, Chou C-S. Mathematical analysis of spontaneous emergence of cell polarity. Bull. Math. Biol., 2014, 76(8): 1835-1865
[45.]
Mahapatra A, Saintillan D, Rangamani P. Transport phenomena in fluid films with curvature elasticity. J. Fluid Mech., 2020, 905: A8
[46.]
Marco E, Wedlich-Soldner R, Li R, Altschuler SJ, Lani FW. Endocytosis optimizes the dynamic localization of membrane proteins that regulate cortical polarity. Cell, 2007, 129(2): 411-422
[47.]
Maroudas-Sacks Y, Garion L, Shani-Zerbib L, Livshits A, Braun E, Keren K. Topological defects in the nematic order of actin fibres as organization centres of Hydra morphogenesis. Nat. Phys., 2021, 17(2): 251-259
[48.]
McMurray MA, Thorner J. Septins: molecular partitioning and the generation of cellular asymmetry. Cell Div., 2009, 4(1): 1-14
[49.]
Mietke A, Jülicher F, Sbalzarini IF. Self-organized shape dynamics of active surfaces. Proc. Natl. Acad. Sci. U.S.A., 2019, 116(1): 29-34
[50.]
Mori Y, Jilkine A, Edelstein-Keshet L. Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys. J., 2008, 94(9): 3684-3697
[51.]
Murphy L, Madzvamuse A. A moving grid finite element method applied to a mechanobiochemical model for 3D cell migration. Appl. Numer. Math., 2020, 158: 336-359
[52.]
Noselli S. JNK signaling and morphogenesis in Drosophila. Trends Genet., 1998, 14(1): 33-38
[53.]
Okada S, Leda M, Hanna J, Savage NS, Bi E, Goryachev AB. Daughter cell identity emerges from the interplay of Cdc42, septins, and exocytosis. Dev. Cell, 2013, 26(2): 148-161
[54.]
Ozbudak EM, Becskei A, van Oudenaarden A. A system of counteracting feedback loops regulates Cdc42p activity during spontaneous cell polarization. Dev. Cell, 2005, 9(4): 565-571
[55.]
Pablo M, Ramirez SA, Elston TC. Particle-based simulations of polarity establishment reveal stochastic promotion of turing pattern formation. PLoS Comput. Biol., 2018, 14(3): 1-25
[56.]
Park H-O, Bi E. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol. Mol. Biol. Rev., 2007, 71(1): 48-96
[57.]
Rätz A, Röger M. Symmetry breaking in a bulk-surface reaction-diffusion model for signalling networks. Nonlinearity, 2014, 27(8): 1805-1827
[58.]
Rubinstein B, Slaughter BD, Li R. Weakly nonlinear analysis of symmetry breaking in cell polarity models. Phys. Biol., 2012, 9(4): 045006
[59.]
Sarfaraz W, Madzvamuse A. Classification of parameter spaces for a reaction-diffusion model on stationary domains. Chaos, Solitons and Fractals, 2017, 103: 33-51
[60.]
Sepúlveda-Ramírez SP, Toledo-Jacobo L, Henson JH, Shuster CB. Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo. Dev. Biol., 2018, 437(2): 140-151
[61.]
Shinoda T, Ito H, Sudo K, Iwamoto I, Morishita R, Nagata K. Septin 14 is involved in cortical neuronal migration via interaction with septin 4. Mol. Biol. Cell, 2010, 21(8): 1324-1334
[62.]
Slaughter BD, Das A, Schwartz JW, Rubinstein B, Li R. Dual modes of Cdc42 recycling fine-tune polarized morphogenesis. Dev. Cell, 2009, 17(6): 823-835
[63.]
Slaughter BD, Smith SE, Li R. Symmetry breaking in the life cycle of the budding yeast. Cold Spring Harb. Perspect. Biol., 2009, 1(3): 18
[64.]
Stinner B, Dedner A, Nixon A. A finite element method for a fourth order surface equation with application to the onset of cell blebbing. Front. Appl. Math. Stat., 2020, 6: 21
[65.]
Takizawa PA, DeRisi JL, Wilhelm JE, Vale RD. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science, 2000, 290(5490): 341-344
[66.]
Tcheperegine SE, Gao X-D, Bi E. Regulation of cell polarity by interactions of Msb3 and Msb4 with Cdc42 and polarisome components. Mol. Cell. Biol., 2005, 25(19): 8567-8580
[67.]
Tooley AJ, Gilden J, Jacobelli J, Beemiller P, Trimble WS, Kinoshita M, Krummel MF. Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nat. Cell Biol., 2009, 11(1): 17-26
[68.]
Torres-Sánchez A, Millán D, Arroyo M. Modelling fluid deformable surfaces with an emphasis on biological interfaces. J. Fluid Mech., 2019, 872: 218-271
[69.]
Trogdon M, Drawert B, Gomez C, Banavar SP, Yi T-M, Campàs O, Petzold LR. The effect of cell geometry on polarization in budding yeast. PLoS Comput. Biol., 2018, 14(6): 1-22
[70.]
Trong PK, Nicola EM, Goehring NW, Vijay Kumar K, Grill SW. Parameter-space topology of models for cell polarity. New J. Phys., 2014, 16(6): 065009
[71.]
Tsai K, Britton S, Nematbakhsh A, Zandi R, Chen W, Alber M. Role of combined cell membrane and wall mechanical properties regulated by polarity signals in cell budding. Phys. Biol., 2020, 17(6)
[72.]
Turing AM. The chemical basis of morphogenesis. Bull. Math. Biol., 1990, 52(1): 153-197
[73.]
Walther GR, Marée AFM, Edelstein-Keshet L, Grieneisen VA. Deterministic versus stochastic cell polarisation through wave-pinning. Bull. Math. Biol., 2012, 74(11): 2570-2599
[74.]
Wu C-F, Lew DJ. Beyond symmetry-breaking: competition and negative feedback in GTPase regulation. Trends Cell Biol., 2013, 23(10): 476-483
[75.]
Zmurchok C, Collette J, Rajagopal V, Holmes WR. Membrane tension can enhance adaptation to maintain polarity of migrating cells. Biophys. J., 2020, 119(8): 1617-1629

Accesses

Citations

Detail

Sections
Recommended

/