GPU computing is expected to play an integral part in all modern Exascale supercomputers. It is also expected that higher order Godunov schemes will make up about a significant fraction of the application mix on such supercomputers. It is, therefore, very important to prepare the community of users of higher order schemes for hyperbolic PDEs for this emerging opportunity.
Not every algorithm that is used in the space-time update of the solution of hyperbolic PDEs will take well to GPUs. However, we identify a small core of algorithms that take exceptionally well to GPU computing. Based on an analysis of available options, we have been able to identify weighted essentially non-oscillatory (WENO) algorithms for spatial reconstruction along with arbitrary derivative (ADER) algorithms for time extension followed by a corrector step as the winning three-part algorithmic combination. Even when a winning subset of algorithms has been identified, it is not clear that they will port seamlessly to GPUs. The low data throughput between CPU and GPU, as well as the very small cache sizes on modern GPUs, implies that we have to think through all aspects of the task of porting an application to GPUs. For that reason, this paper identifies the techniques and tricks needed for making a successful port of this very useful class of higher order algorithms to GPUs.
Application codes face a further challenge—the GPU results need to be practically indistinguishable from the CPU results—in order for the legacy knowledge bases embedded in these applications codes to be preserved during the port of GPUs. This requirement often makes a complete code rewrite impossible. For that reason, it is safest to use an approach based on OpenACC directives, so that most of the code remains intact (as long as it was originally well-written). This paper is intended to be a one-stop shop for anyone seeking to make an OpenACC-based port of a higher order Godunov scheme to GPUs.
We focus on three broad and high-impact areas where higher order Godunov schemes are used. The first area is computational fluid dynamics (CFD). The second is computational magnetohydrodynamics (MHD) which has an involution constraint that has to be mimetically preserved. The third is computational electrodynamics (CED) which has involution constraints and also extremely stiff source terms. Together, these three diverse uses of higher order Godunov methodology, cover many of the most important applications areas. In all three cases, we show that the optimal use of algorithms, techniques, and tricks, along with the use of OpenACC, yields superlative speedups on GPUs. As a bonus, we find a most remarkable and desirable result: some higher order schemes, with their larger operations count per zone, show better speedup than lower order schemes on GPUs. In other words, the GPU is an optimal stratagem for overcoming the higher computational complexities of higher order schemes. Several avenues for future improvement have also been identified. A scalability study is presented for a real-world application using GPUs and comparable numbers of high-end multicore CPUs. It is found that GPUs offer a substantial performance benefit over comparable number of CPUs, especially when all the methods designed in this paper are used.