Bifurcation Analysis Reveals Solution Structures of Phase Field Models

Xinyue Evelyn Zhao, Long-Qing Chen, Wenrui Hao, Yanxiang Zhao

Communications on Applied Mathematics and Computation ›› 2022, Vol. 6 ›› Issue (1) : 64-89. DOI: 10.1007/s42967-022-00221-1

Bifurcation Analysis Reveals Solution Structures of Phase Field Models

Author information +
History +

Abstract

The phase field method is playing an increasingly important role in understanding and predicting morphological evolution in materials and biological systems. Here, we develop a new analytical approach based on the bifurcation analysis to explore the mathematical solution structure of phase field models. Revealing such solution structures not only is of great mathematical interest but also may provide guidance to experimentally or computationally uncover new morphological evolution phenomena in materials undergoing electronic and structural phase transitions. To elucidate the idea, we apply this analytical approach to three representative phase field equations: the Allen-Cahn equation, the Cahn-Hilliard equation, and the Allen-Cahn-Ohta-Kawasaki system. The solution structures of these three phase field equations are also verified numerically by the homotopy continuation method.

Keywords

Phase field modeling / Bifurcations / Multiple solutions

Cite this article

Download citation ▾
Xinyue Evelyn Zhao, Long-Qing Chen, Wenrui Hao, Yanxiang Zhao. Bifurcation Analysis Reveals Solution Structures of Phase Field Models. Communications on Applied Mathematics and Computation, 2022, 6(1): 64‒89 https://doi.org/10.1007/s42967-022-00221-1

References

[1.]
Akrivis G, Crouzeix M, Makridakis C. Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comput. Am. Math. Soc., 1998, 67: 457
[2.]
Anderson DM, McFadden GB, Wheeler AA. Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech., 1998, 30: 139
[3.]
Bats FS, Fredrickson GH. Block copolymers—designer soft materials. Phys. Today, 1999, 52(2): 32
[4.]
Bauer L, Keller HB, Reiss E. Multiple eigenvalues lead to secondary bifurcation. SIAM Rev., 1975, 17(1): 101-122
[5.]
Benesova B, Melcher C, Suli E. An implicit midpoint spectral approximation of nonlocal Cahn-Hilliard equations. SIAM J. Numer. Anal., 2014, 52: 1466
[6.]
Boettinger WJ, Warren JA, Beckermann C, Karma A. Phase-field simulation of solidification. Annu. Rev. Mater. Res., 2002, 32: 163-194
[7.]
Borden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM. A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng., 2012, 217: 77
[8.]
Brower R, Kessler D, Koplik J, Levine H. Geometrical models of interface evolution. Phy. Rev. A, 1984, 29: 1335
[9.]
Cahn J, Allen S. A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics. J. de Physique, 1977, 38: C7-51
[10.]
Cahn, J., Hilliard, J.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258 (1958)
[11.]
Cahn JW. On spinodal decomposition. Acta Metallurgica, 1961, 9(9): 795-801
[12.]
Camley B, Zhao Y, Li B, Levine H, Rappel W-J. Crawling and turning in a minimal reaction-diffusion cell motility model: coupling cell shape and biochemistry. Phys. Rev. E, 2017, 95
[13.]
Chan H, Nejad M, Wei J. Lamellar phase solutions for diblock copolymers with nonlocal diffusions. Phys. D, 2019, 388: 22-32
[14.]
Chen LQ. Phase-field models for microstructure evolution. Annu. Rev. Mater. Res., 2002, 32: 113
[15.]
Chen LQ, Shen J. Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun., 1998, 108: 147
[16.]
Chen LQ, Zhao YH. From classical thermodynamics to phase-field method. Progress in Materials Science, 2022, 124: 10086
[17.]
Cheng W, Yang X, Shen J. Efficient and accurate numerical schemes for a hydro-dynamically coupled phase field diblock copolymer model. J. Comput. Phys., 2017, 341: 44
[18.]
Choi, H., Zhao, Y.: Second-order stabilized semi-implicit energy stable schemes for bubble assemblies in binary and ternary systems. DCDS-B 27(8), 4649–4683 (2021)
[19.]
Choksi R. Scaling laws in microphase separation of diblock copolymers. J. Nonlinear Sci., 2011, 11: 223-236
[20.]
Choksi R. On global minimizers for a variational problem with long-range interactions. Quart. Appl. Math., 2012, 70: 517-537
[21.]
Cox SM, Matthews PC. Exponential time differencing for stiff systems. J. Comput. Phys., 2002, 176: 430
[22.]
Crandall MG, Rabinowitz PH. Bifurcation from simple eigenvalues. J. Funct. Anal., 1971, 8(2): 321-340
[23.]
Du Q, Feng X. The phase field method for geometric moving interfaces and their numerical approximations. Handbook of Numerical Analysis, 2020, 21: 425
[24.]
Du Q, Ju L, Li X, Qiao Z. Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes. SIAM Rev., 2021, 63: 317
[25.]
Du Q, Nicolaides RA. Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal., 1991, 28: 1310
[26.]
Eyre, D. J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution (San Francisco, CA, 1998), Mater. Res. Soc. Sympos. Proc., vol. 529, pp. 39–46. MRS, Warrendale (1998)
[27.]
Fix, G.J.: Phase field model for free boundary problems. In: Fasano, A., Primicerio, M. (eds) Free Boundary Problems: Theory and Applications, vol. 2. Pitman Publishing Inc., Massachusetts, USA (1983)
[28.]
Friedman A, Hu B. Bifurcation from stability to instability for a free boundary problem arising in a tumor model. Arch. Ration. Mech. Anal., 2006, 180(2): 293-330
[29.]
Friedman A, Hu B. Bifurcation for a free boundary problem modeling tumor growth by Stokes equation. SIAM J. Math. Anal., 2007, 39(1): 174-194
[30.]
Friedman A, Reitich F. Symmetry-breaking bifurcation of analytic solutions to free boundary problems: an application to a model of tumor growth. Trans. Amer. Math. Soc., 2001, 353(4): 1587-1634
[31.]
Gennip Y, Peletier M. Copolymer-homopolymer blends: global energy minimisation and global energy bounds. Calc. Var. Partial Differ. Equ., 2008, 33: 75-111
[32.]
Ginzburg VQ, Landau LE. On the theory of superconductivity. Soviet Physics - JETP, 1950, 20(12): 1064-1082
[33.]
Goldstein GR, Miranville A, Schimperna G. A Cahn-Hilliard model in a domain with non-permeable walls. Physica D: Nonlinear Phenomena D, 2011, 240(8): 754-766
[34.]
Haber R, Unbehauen H. Structure identification of nonlinear dynamic systems survey on input/output approaches. Automatica, 1990, 26(4): 651-677
[35.]
Hao, W.: An adaptive homotopy tracking algorithm for solving nonlinear parametric systems with applications in nonlinear ODEs. Appl. Math. Lett. 125, 107767 (2022)
[36.]
Hao W, Crouser E, Friedman A. Mathematical model of sarcoidosis. Proc. Natl. Acad. Sci. USA, 2014, 111(45): 16065-16070
[37.]
Hao W, Friedman A. The LDL-HDL profile determines the risk of atherosclerosis: a mathematical model. PloS One, 2014, 9(3)
[38.]
Hao W, Hauenstein J, Hu B, Liu Y, Sommese A, Zhang Y-T. Multiple stable steady states of a reaction-diffusion model on zebrafish dorsal-ventral patterning. Discrete Contin. Dyn. Syst. Ser. S, 2011, 4(6): 1413-1428
[39.]
Hao W, Hauenstein J, Hu B, Liu Y, Sommese AJ, Zhang Y-T. Bifurcation for a free boundary problem modeling the growth of a tumor with a necrotic core. Nonlinear Analysis: Real World Applications, 2012, 13(2): 694-709
[40.]
Hao W, Hauenstein J, Hu B, Sommese A. A three-dimensional steady-state tumor system. Appl. Math. Comput., 2011, 218(6): 2661-2669
[41.]
Hao W, Hauenstein J, Shu C-W, Sommese A, Xu Z, Zhang Y-T. A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws. J. Comput. Phys., 2013, 250: 332-346
[42.]
Hao W, Nepomechie R, Sommese A. Completeness of solutions of bethe’s equations. Phys. Rev. E, 2013, 88(5)
[43.]
Hao W, Nepomechie R, Sommese A. Singular solutions, repeated roots and completeness for higher-spin chains. J. Stat. Mech. Theory Exp., 2014, 2014(3): P03024
[44.]
Hao, W., Xue, C.: Spatial pattern formation in reaction-diffusion models: a computational approach. J. Math. Biol. 80, 521–543 (2020)
[45.]
Hao W, Zheng C. An adaptive homotopy method for computing bifurcations of nonlinear parametric systems. J. Sci. Comput., 2020, 82(3): 53
[46.]
Hao, W., Zheng, C.: Bifurcation analysis of a free boundary model of the atherosclerotic plaque formation associated with the cholesterol ratio. Chaos 30(9), 093113 (2020)
[47.]
Hao Wenrui, Zheng C. Zheng, Chunyue: A stochastic homotopy tracking algorithm for parametric systems of nonlinear equations. J. Sci. Comput., 2021, 87(3): 87
[48.]
Joo S, Xu X, Zhao Y. Analysis and computation for Allen-Cahn-Ohta-Nakazawa model in ternary system. Interfaces Free Bound., 2021, 23: 535-559
[49.]
Kessler, D., Koplik, J., Levine, H.: Geometrical models of interface evolution. II. Numerical simulation. Phys. Rev. A 30, 3161 (1984)
[50.]
Kessler, D., Koplik, J., Levine, H.: Geometrical models of interface evolution. III. Theory of dendritic growth. Phys. Rev. A 31, 1712 (1985)
[51.]
Knopf, P., Lam, K.F., Liu, C., Metzger, S.: Phase-field dynamics with transfer of materials: the Cahn-Hilliard equation with reaction rate dependent dynamic boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis 55(1), 229–282 (2021)
[52.]
Liu C, Shen J. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys D, 2003, 179(3/4): 211-228
[53.]
Liu C, Wu H. An energetic variational approach for the Cahn-Hilliard equation with dynamic boundary condition: model derivation and mathematical analysis. Arch. Ration. Mech. Anal., 2019, 233(1): 167-247
[54.]
Morgan A, Sommese A. Computing all solutions to polynomial systems using homotopy continuation. Appl. Math. Comput., 1987, 24(2): 115-138
[55.]
Nakazawa H, Ohta T. Microphase separation of ABC-type triblock copolymers. Macromolecules, 1993, 26: 5503-5511
[56.]
Ohta T, Kawasaki K. Equilibrium morphology of block copolymer melts. Macromolecules, 1986, 19: 2621-2632
[57.]
Ren X, Truskinovsky L. Finite scale microstructures in nonlocal elasticity. J. Elasticity, 2000, 59: 319-355
[58.]
Ren X, Wei J. On the multiplicity of solutions of two nonlocal variational problems. SIAM J. Math. Anal., 2000, 4: 909-924
[59.]
Ren X, Wei J. Triblock copolymer theory: ordered ABC lamellar phase. J. Nonlinear Sci., 2003, 13: 175-208
[60.]
Ren X, Wei J. A double bubble in a ternary system with inhibitory long range interaction. Arch. Ration. Mech. Anal., 2013, 208: 201-253
[61.]
Ren X, Wei J. A double bubble assembly as a new phase of a ternary inhibitory system. Arch. Ration. Mech. Anal., 2015, 215: 967-1034
[62.]
Rheinboldt W. Numerical methods for a class of finite dimensional bifurcation problems. SIAM J. Numer. Anal., 1978, 15(1): 1-11
[63.]
Rheinboldt W. Numerical analysis of continuation methods for nonlinear structural problems. Comput. & Struct., 1981, 13(1): 103-113
[64.]
Rowlinson JS. Translation of J. D. van der Waals' “the thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”. J. Stat. Phys., 1979, 20(2): 197-200
[65.]
Shen J, Xu J, Yang J. The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys., 2018, 353: 407
[66.]
Song H, Shu C-W. Unconditional energy stability analysis of a second order implicit-explicit local discontinuous Galerkin method for the Cahn-Hilliard equation. J. Sci. Comput., 2017, 73: 1178-1203
[67.]
Steinbach I. Phase-field model for microstructure evolution at the mesoscopic scale. Annu. Rev. Mater. Res., 2013, 43: 89-107
[68.]
Stephen MJ, Suhl H. Weak time dependence in pure superconductors. Phys. Rev. Lett., 1964, 13(26): 797-800
[69.]
Van der Waals, J.D.: Theorie thermodynamique de la capillarite, dans l’hypothese d’une variation continue de la densite. Archives Neerlandaises des Sciences Exactes et Naturelles XXVIII, 121–209 (1979)
[70.]
Wang C, Ren X, Zhao Y. Bubble assemblies in ternary systems with long range interaction. Comm. Math. Sci., 2019, 17: 2309-2324
[71.]
Xu J, Li Y, Wu S, Bousquetd A. On the stability and accuracy of partially and fully implicit schemes for phase field modeling. Comput. Methods Appl. Mech. Eng., 2019, 345: 826
[72.]
Xu X, Zhao Y. Energy stable semi-implicit schemes for Allen-Cahn-Ohta-Kawasaki model in binary system. J. Sci. Comput., 2019, 80: 1656-1680
[73.]
Xu X, Zhao Y. Maximum principle preserving schemes for binary systems with long-range interactions. J. Sci. Comput., 2020, 84: 33
[74.]
Xu, Z., Du, Q.: On the ternary Ohta-Kawasaki free energy and its one-dimensional global minimizers. arXiv: 2111.09877 (2021)
[75.]
Yang X. Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys., 2016, 327: 294
[76.]
Zhao XY, Hu B. Symmetry-breaking bifurcation for a free-boundary tumor model with time delay. Journal of Differential Equations, 2020, 269(3): 1829-1862
[77.]
Zhao XY, Hu B. Bifurcation for a free boundary problem modeling a small arterial plaque. J. Differential Equations, 2021, 288: 250-287
[78.]
Ziebert, F., Aranson, I.S.: Computational approaches to substrate-based cell motility. npj Computational Materials, 2(1), 103–118 (2016)
Funding
Office of Science(DESC0020145); Directorate for Mathematical and Physical Sciences(DMS-2052685); Directorate for Mathematical and Physical Sciences(2142500); Simons Foundation(357963)

Accesses

Citations

Detail

Sections
Recommended

/