Energy Stable Nodal DG Methods for Maxwell’s Equations of Mixed-Order Form in Nonlinear Optical Media
Maohui Lyu, Vrushali A. Bokil, Yingda Cheng, Fengyan Li
Energy Stable Nodal DG Methods for Maxwell’s Equations of Mixed-Order Form in Nonlinear Optical Media
In this work, we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion, the instantaneous nonlinear cubic Kerr response, and the nonlinear delayed Raman molecular vibrational response. Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al. (J Comput Phys 350: 420–452, 2017) and Lyu et al. (J Sci Comput 89: 1–42, 2021), a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part (i.e., the auxiliary differential equations) modeling the linear and nonlinear dispersion in the material. The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization. A nodal discontinuous Galerkin (DG) method is further applied in space for efficiently handling nonlinear terms at the algebraic level, while preserving the energy stability and achieving high-order accuracy. Indeed with
Maxwell’s equations / Kerr and Raman / Discontinuous Galerkin method / Energy stability
[1.] |
Agrawal, G.P.: Nonlinear fiber optics. In: Christiansen, P.L., Sørensen, M.P., Scott, A.C. (eds.) Nonlinear Science at the Dawn of the 21st Century, pp. 195–211. Springer (2000)
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
Fezoui, L., Lanteri, S.: Discontinuous Galerkin methods for the numerical solution of the nonlinear Maxwell equations in 1d. PhD thesis, INRIA (2015)
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
/
〈 | 〉 |