Energy Stable Nodal DG Methods for Maxwell’s Equations of Mixed-Order Form in Nonlinear Optical Media

Maohui Lyu, Vrushali A. Bokil, Yingda Cheng, Fengyan Li

Communications on Applied Mathematics and Computation ›› 2022, Vol. 6 ›› Issue (1) : 30-63. DOI: 10.1007/s42967-022-00212-2
Original Paper

Energy Stable Nodal DG Methods for Maxwell’s Equations of Mixed-Order Form in Nonlinear Optical Media

Author information +
History +

Abstract

In this work, we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion, the instantaneous nonlinear cubic Kerr response, and the nonlinear delayed Raman molecular vibrational response. Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al. (J Comput Phys 350: 420–452, 2017) and Lyu et al. (J Sci Comput 89: 1–42, 2021), a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part (i.e., the auxiliary differential equations) modeling the linear and nonlinear dispersion in the material. The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization. A nodal discontinuous Galerkin (DG) method is further applied in space for efficiently handling nonlinear terms at the algebraic level, while preserving the energy stability and achieving high-order accuracy. Indeed with

d E
as the number of the components of the electric field, only a
d E × d E
nonlinear algebraic system needs to be solved at each interpolation node, and more importantly, all these small nonlinear systems are completely decoupled over one time step, rendering very high parallel efficiency. We evaluate the proposed schemes by comparing them with the methods in Bokil et al. (2017) and Lyu et al. (2021) (implemented in nodal form) regarding the accuracy, computational efficiency, and energy stability, by a parallel scalability study, and also through the simulations of the soliton-like wave propagation in one dimension, as well as the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional transverse electric (TE) mode of the equations.

Keywords

Maxwell’s equations / Kerr and Raman / Discontinuous Galerkin method / Energy stability

Cite this article

Download citation ▾
Maohui Lyu, Vrushali A. Bokil, Yingda Cheng, Fengyan Li. Energy Stable Nodal DG Methods for Maxwell’s Equations of Mixed-Order Form in Nonlinear Optical Media. Communications on Applied Mathematics and Computation, 2022, 6(1): 30‒63 https://doi.org/10.1007/s42967-022-00212-2

References

[1.]
Agrawal, G.P.: Nonlinear fiber optics. In: Christiansen, P.L., Sørensen, M.P., Scott, A.C. (eds.) Nonlinear Science at the Dawn of the 21st Century, pp. 195–211. Springer (2000)
[2.]
Bey KS, Oden JT, Patra A. A parallel hp-adaptive discontinuous Galerkin method for hyperbolic conservation laws. Appl. Numer. Math., 1996, 20(4): 321-336,
CrossRef Google scholar
[3.]
Biswas R, Devine KD, Flaherty JE. Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math., 1994, 14(1/2/3): 255-283,
CrossRef Google scholar
[4.]
Bokil VA, Cheng Y, Jiang Y, Li F. Energy stable discontinuous Galerkin methods for Maxwell’s equations in nonlinear optical media. J. Comput. Phys., 2017, 350: 420-452,
CrossRef Google scholar
[5.]
Bokil VA, Cheng Y, Jiang Y, Li F, Sakkaplangkul P. High spatial order energy stable FDTD methods for Maxwell’s equations in nonlinear optical media in one dimension. J. Sci. Comput., 2018, 77(1): 330-371,
CrossRef Google scholar
[6.]
Boyd RW. . Nonlinear Optics, 2003 New York Academic Press
[7.]
Chen C-L. . Optical Solitons in Optical Fibers, 2005 New York Wiley
[8.]
Cockburn B, Singler JR, Zhang Y. Interpolatory HDG method for parabolic semilinear PDEs. J. Sci. Comput., 2019, 79(3): 1777-1800,
CrossRef Google scholar
[9.]
Fezoui, L., Lanteri, S.: Discontinuous Galerkin methods for the numerical solution of the nonlinear Maxwell equations in 1d. PhD thesis, INRIA (2015)
[10.]
Fisher A, White D, Rodrigue G. An efficient vector finite element method for nonlinear electromagnetic modeling. J. Comput. Phys., 2007, 225(2): 1331-1346,
CrossRef Google scholar
[11.]
Gilles L, Hagness SC, Vázquez L. Comparison between staggered and unstaggered finite-difference time-domain grids for few-cycle temporal optical soliton propagation. J. Comput. Phys., 2000, 161(2): 379-400,
CrossRef Google scholar
[12.]
Greene J, Taflove A. Scattering of spatial optical solitons by subwavelength air holes. Microw. Wirel. Compon. Lett. IEEE, 2007, 17: 760-762,
CrossRef Google scholar
[13.]
Greene JH, Taflove A. General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics. Opt. Express, 2006, 14(18): 8305-8310,
CrossRef Google scholar
[14.]
Hesthaven JS, Warburton T. . Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, 2007 Berlin Springer Science & Business Media
[15.]
Jackson JD. . Classical Electrodynamics, 1999 New York Wiley
[16.]
Lubin Z, Greene JH, Taflove A. FDTD computational study of ultra-narrow TM non-paraxial spatial soliton interactions. IEEE Microw. Wirel. Compon. Lett., 2011, 21(5): 228-230,
CrossRef Google scholar
[17.]
Lyu M, Bokil VA, Cheng Y, Li F. Energy stable nodal discontinuous Galerkin methods for nonlinear Maxwell’s equations in multi-dimensions. J. Sci. Comput., 2021, 89: 1-42,
CrossRef Google scholar
[18.]
Patel CKN. Efficient phase-matched harmonic generation in Tellurium with a CO 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{CO}_2$$\end{document} laser at 10.6  μ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}. Phys. Rev. Lett., 1965, 15(26): 1027-1030,
CrossRef Google scholar
[19.]
Sørensen MP, Webb GM, Brio M, Moloney JV. Kink shape solutions of the Maxwell–Lorentz system. Phys. Rev. E, 2005, 71(3),
CrossRef Google scholar
Funding
China Postdoctoral Science Foundation(2020TQ0344); National Natural Science Foundation of China(12101597); National Science Foundation(DMS-2012882); National Science Foundation(DMS-1719942); National Science Foundation(DMS-1913072)

Accesses

Citations

Detail

Sections
Recommended

/