Feb 2017, Volume 18 Issue 1
    

  • Select all
  • Editorial
    Yun-he PAN
  • Review
    Yue-ting ZHUANG,Fei WU,Chun CHEN,Yun-he PAN

    In this paper, we review recent emerging theoretical and technological advances of artificial intelligence (AI) in the big data settings. We conclude that integrating data-driven machine learning with human knowledge (common priors or implicit intuitions) can effectively lead to explainable, robust, and general AI, as follows: from shallow computation to deep neural reasoning; from merely data-driven model to data-driven with structured logic rules models; from task-oriented (domain-specific) intelligence (adherence to explicit instructions) to artificial general intelligence in a general context (the capability to learn from experience). Motivated by such endeavors, the next generation of AI, namely AI 2.0, is positioned to reinvent computing itself, to transform big data into structured knowledge, and to enable better decision-making for our society.

  • Review
    Wei LI,Wen-jun WU,Huai-min WANG,Xue-qi CHENG,Hua-jun CHEN,Zhi-hua ZHOU,Rong DING

    The Internet based cyber-physical world has profoundly changed the information environment for the development of artificial intelligence (AI), bringing a new wave of AI research and promoting it into the new era of AI 2.0. As one of the most prominent characteristics of research in AI 2.0 era, crowd intelligence has attracted much attention from both industry and research communities. Specifically, crowd intelligence provides a novel problem-solving paradigm through gathering the intelligence of crowds to address challenges. In particular, due to the rapid development of the sharing economy, crowd intelligence not only becomes a new approach to solving scientific challenges, but has also been integrated into all kinds of application scenarios in daily life, e.g., online-tooffline (O2O) application, real-time traffic monitoring, and logistics management. In this paper, we survey existing studies of crowd intelligence. First, we describe the concept of crowd intelligence, and explain its relationship to the existing related concepts, e.g., crowdsourcing and human computation. Then, we introduce four categories of representative crowd intelligence platforms. We summarize three core research problems and the state-of-the-art techniques of crowd intelligence. Finally, we discuss promising future research directions of crowd intelligence.

  • Review
    Yu-xin PENG,Wen-wu ZHU,Yao ZHAO,Chang-sheng XU,Qing-ming HUANG,Han-qing LU,Qing-hua ZHENG,Tie-jun HUANG,Wen GAO

    Cross-media analysis and reasoning is an active research area in computer science, and a promising direction for artificial intelligence. However, to the best of our knowledge, no existing work has summarized the state-of-the-art methods for cross-media analysis and reasoning or presented advances, challenges, and future directions for the field. To address these issues, we provide an overview as follows: (1) theory and model for cross-media uniform representation; (2) cross-media correlation understanding and deep mining; (3) cross-media knowledge graph construction and learning methodologies; (4) cross-media knowledge evolution and reasoning; (5) cross-media description and generation; (6) cross-media intelligent engines; and (7) cross-media intelligent applications. By presenting approaches, advances, and future directions in cross-media analysis and rea-soning, our goal is not only to draw more attention to the state-of-the-art advances in the field, but also to provide technical insights by discussing the challenges and research directions in these areas.

  • Review
    Yong-hong TIAN,Xi-lin CHEN,Hong-kai XIONG,Hong-liang LI,Li-rong DAI,Jing CHEN,Jun-liang XING,Jing CHEN,Xi-hong WU,Wei-min HU,Yu HU,Tie-jun HUANG,Wen GAO

    Perception is the interaction interface between an intelligent system and the real world. Without sophisticated and flexible perceptual capabilities, it is impossible to create advanced artificial intelligence (AI) systems. For the next-generation AI, called ‘AI 2.0’, one of the most significant features will be that AI is empowered with intelligent perceptual capabilities, which can simulate human brain’s mechanisms and are likely to surpass human brain in terms of performance. In this paper, we briefly review the state-of-the-art advances across different areas of perception, including visual perception, auditory perception, speech per-ception, and perceptual information processing and learning engines. On this basis, we envision several R&D trends in intelligent perception for the forthcoming era of AI 2.0, including: (1) human-like and transhuman active vision; (2) auditory perception and computation in an actual auditory setting; (3) speech perception and computation in a natural interaction setting; (4) autonomous learning of perceptual information; (5) large-scale perceptual information processing and learning platforms; and (6) urban om-nidirectional intelligent perception and reasoning engines. We believe these research directions should be highlighted in the future plans for AI 2.0.

  • Review
    Tao ZHANG,Qing LI,Chang-shui ZHANG,Hua-wei LIANG,Ping LI,Tian-miao WANG,Shuo LI,Yun-long ZHU,Cheng WU

    Intelligent unmanned autonomous systems are some of the most important applications of artificial intelligence (AI). The development of such systems can significantly promote innovation in AI technologies. This paper introduces the trends in the development of intelligent unmanned autonomous systems by summarizing the main achievements in each technological platform. Furthermore, we classify the relevant technologies into seven areas, including AI technologies, unmanned vehicles, unmanned aerial vehicles, service robots, space robots, marine robots, and unmanned workshops/intelligent plants. Current trends and de-velopments in each area are introduced.

  • Review
    Bo-hu LI,Bao-cun HOU,Wen-tao YU,Xiao-bing LU,Chun-wei YANG

    Based on research into the applications of artificial intelligence (AI) technology in the manufacturing industry in recent years, we analyze the rapid development of core technologies in the new era of ‘Internet plus AI’, which is triggering a great change in the models, means, and ecosystems of the manufacturing industry, as well as in the development of AI. We then propose new models, means, and forms of intelligent manufacturing, intelligent manufacturing system architecture, and intelligent man-ufacturing technology system, based on the integration of AI technology with information communications, manufacturing, and related product technology. Moreover, from the perspectives of intelligent manufacturing application technology, industry, and application demonstration, the current development in intelligent manufacturing is discussed. Finally, suggestions for the appli-cation of AI in intelligent manufacturing in China are presented.

  • Article
    Le-kui ZHOU,Si-liang TANG,Jun XIAO,Fei WU,Yue-ting ZHUANG

    Named entity disambiguation (NED) is the task of linking mentions of ambiguous entities to their referenced entities in a knowledge base such as Wikipedia. We propose an approach to effectively disentangle the discriminative features in the manner of collaborative utilization of collective wisdom (via human-labeled crowd labels) and deep learning (via human-generated data) for the NED task. In particular, we devise a crowd model to elicit the underlying features (crowd features) from crowd labels that indicate a matching candidate for each mention, and then use the crowd features to fine-tune a dynamic convolutional neural network (DCNN). The learned DCNN is employed to obtain deep crowd features to enhance traditional hand-crafted features for the NED task. The proposed method substantially benefits from the utilization of crowd knowledge (via crowd labels) into a generic deep learning for the NED task. Experimental analysis demonstrates that the proposed approach is superior to the traditional hand-crafted features when enough crowd labels are gathered.

  • Article
    Yuan LIANG,Wei-feng LV,Wen-jun WU,Ke XU

    Recently, crowdsourcing platforms have attracted a number of citizens to perform a variety of locationspecific tasks. However, most existing approaches consider the arrangement of a set of tasks for a set of crowd workers, while few consider crowd workers arriving in a dynamic manner. Therefore, how to arrange suitable location-specific tasks to a set of crowd workers such that the crowd workers obtain maximum satisfaction when arriving sequentially represents a challenge. To address the limitation of existing approaches, we first identify a more general and useful model that considers not only the arrangement of a set of tasks to a set of crowd workers, but also all the dynamic arrivals of all crowd workers. Then, we present an effective crowd-task model which is applied to offline and online settings, respectively. To solve the problem in an offline setting, we first observe the characteristics of task planning (CTP) and devise a CTP algorithm to solve the problem. We also propose an effective greedy method and integrated simulated annealing (ISA) techniques to improve the algorithm performance. To solve the problem in an online setting, we develop a greedy algorithm for task planning. Finally, we verify the effectiveness and efficiency of the proposed solutions through extensive experiments using real and synthetic datasets.

  • Article
    Jian-ru XUE,Di WANG,Shao-yi DU,Di-xiao CUI,Yong HUANG,Nan-ning ZHENG

    Most state-of-the-art robotic cars’ perception systems are quite different from the way a human driver understands traffic environments. First, humans assimilate information from the traffic scene mainly through visual perception, while the machine perception of traffic environments needs to fuse information from several different kinds of sensors to meet safety-critical requirements. Second, a robotic car requires nearly 100% correct perception results for its autonomous driving, while an experienced human driver works well with dynamic traffic environments, in which machine perception could easily produce noisy perception results. In this paper, we propose a vision-centered multi-sensor fusing framework for a traffic environment perception approach to autonomous driving, which fuses camera, LIDAR, and GIS information consistently via both geometrical and semantic constraints for efficient selflocalization and obstacle perception. We also discuss robust machine vision algorithms that have been successfully integrated with the framework and address multiple levels of machine vision techniques, from collecting training data, efficiently processing sensor data, and extracting low-level features, to higher-level object and environment mapping. The proposed framework has been tested extensively in actual urban scenes with our self-developed robotic cars for eight years. The empirical results validate its robustness and efficiency.

  • Article
    Hao FANG,Shao-lei LU,Jie CHEN,Wen-jie CHEN

    Coalition formation is an important coordination problem in multi-agent systems, and a proper description of collaborative abilities for agents is the basic and key precondition in handling this problem. In this paper, a model of task-oriented collaborative abilities is established, where five task-oriented abilities are extracted to form a collaborative ability vector. A task demand vector is also described. In addition, a method of coalition formation with stochastic mechanism is proposed to reduce excessive competitions. An artificial intelligent algorithm is proposed to compensate for the difference between the expected and actual task requirements, which could improve the cognitive capabilities of agents for human commands. Simulations show the effectiveness of the proposed model and the distributed artificial intelligent algorithm.

  • Article
    Bo-hu LI,Hui-yang QU,Ting-yu LIN,Bao-cun HOU,Xiang ZHAI,Guo-qiang SHI,Jun-hua ZHOU,Chao RUAN

    In this paper, we present a swarm intelligence design technology based on a workshop of meta-synthetic engineering, including the architecture, the decision-making process of swarm intelligence design based on a meta-synthetic workshop, and the design resource delivery technology involved in the design. We conclude the paper with a discussion of future research.