Ananalysis in metal barcode label design for reference
Yin ZHAO, Hong-guang XU, Qin-yu ZHANG
Ananalysis in metal barcode label design for reference
We employ nondestructive evaluation involving AC field measurement in detecting and identifying metal barcode labels, providing a reference for design. Using the magnetic scalar potential boundary condition at notches in thin-skin field theory and 2D Fourier transform, we introduce an analytical model for the magnetic scalar potential induced by the interaction of a high-frequency inducer with a metal barcode label containing multiple narrow saw-cut notches, and then calculate the magnetic field in the free space above the metal barcode label. With the simulations of the magnetic field, qualitative analysis is given for the effects on detecting and identifying metal barcode labels, which are caused by metal material, notch characteristics, exciting inducer properties, and other factors that can be used in metal barcode label design as reference. Simulation results are in good accordance with experiment results.
Metal barcode label / Signal detection / AC field measurement / Internet of things
[1] |
Amineh, R.K., Ravan, M., Sadeghi, S.H.H., et al., 2008. Using AC field measurement data at an arbitrary liftoff distance to size long surface-breaking cracks in ferrous metals. NDT & EInt., 41(3):169–177. http://dx.doi.org/10.1016/j.ndteint.2007.10.002
|
[2] |
Auld, B.A., Moulder, J.C., 1999. Review of advances in quantitative eddy current nondestructive evaluation. J. Nondestruct. Eval., 18(1):3–36. http://dx.doi.org/10.1023/A:1021898520626
|
[3] |
Bowler, J.R., 1994. Eddy-current interaction with an ideal crack. I. the forward problem. J. Appl. Phys., 75(12): 8128–8137. http://dx.doi.org/10.1063/1.356511
|
[4] |
Bowler, J.R., Harfield, N., 1998. Evaluation of probe impedance due to thin-skin eddy-current interaction with surface cracks. IEEE Trans. Magnet., 34(2):515–523. http://dx.doi.org/10.1109/20.661483
|
[5] |
Bowler, J.R., Sabbagh, L., Sabbagh, H., 1989. A theoret-ical and computational model of eddy-current probes incorporating volume integral and conjugate gradient methods. IEEE Trans. Magnet., 25(3):2650–2664. http://dx.doi.org/10.1109/20.24505
|
[6] |
Bowler, J.R., Sabbagh, L.D., Sabbagh, H.A., 1990. Eddy-current probe impedance due to a surface slot in a conductor. IEEE Trans. Magnet., 26(2):889–892. http://dx.doi.org/10.1109/20.106460
|
[7] |
Bowler, J.R., Theodoulidis, T.P., Poulakis, N., 2012. Eddy current probe signals due to a crack at a right-angled corner. IEEE Trans. Magnet., 48(12):4735–4746. http://dx.doi.org/10.1109/TMAG.2012.2203918
|
[8] |
Ditchburn, R.J., Burke, S.K., Posada, M., 2003. Eddy-current nondestructive inspection with thin spiral coils: long cracks in steel. J. Nondestruct. Eval., 22(2):63–77. http://dx.doi.org/10.1023/A:1026340510696
|
[9] |
Dodd, C.V., Deeds, W.E., 1968. Analytical solutions to eddy-current probe-coil problems. J. Appl. Phys., 39:2829–2838. http://dx.doi.org/10.1063/1.1656680
|
[10] |
French, P.C., Bond, L.J., 1988. Finite-element modeling of eddy-current nondestructive evaluation (NDE).. J. Nondestruct.Eval., 7(1):55–69. http://dx.doi.org/10.1007/BF00565777
|
[11] |
Grimberg, R., 2011. Electromagnetic nondestructive evalua-tion: present and future. Stroj. vestn. J. Mech. Eng., 57(3):204–217.
|
[12] |
Lewis, A.M., Michael, D.H., Lugg, M.C., et al., 1988. Thin-skin electromagnetic fields around surface-breaking cracks in metals. J. Appl. Phys., 64:3777–3784. http://dx.doi.org/10.1063/1.341384
|
[13] |
Michael, D.H., Waechter, R.T., Collins, R., 1982. The mea¬surement of surface cracks in metals by using AC electric fields. . Proc.R. Soc. Lond. A, 381(1780):139–157. http://dx.doi.org/10.1098/rspa.1982.0062
|
[14] |
Michael, D.H., Lewis, A.M., McIver, M., et al., 1991. Thin-skin electromagnetic fields in the neighbourhood of surface-breaking cracks in metals. Proc. R. Soc. Lond. A, 434(1892):587–603. http://dx.doi.org/10.1098/rspa.1991.0115
|
[15] |
Mirshekar-Syahkal, D., Mostafavi, R.F., 1997. Analysis tech¬nique for interaction of high-frequency rhombic inducer field with cracks in metals. IEEE Trans. Magnet., 33(3):2291–2298. http://dx.doi.org/10.1109/20.573845
|
[16] |
Morisue, T., 1982. Magnetic vector potential and electric scalar potential in three-dimensional eddy current problem. IEEE Trans. Magnet., 18(2):531–535. http://dx.doi.org/10.1109/TMAG.1982.1061856
|
[17] |
Mostafavi, R.F., Mirshekar-Syahkal, D., 1999. AC fields around short cracks in metals induced by rectangular coils. IEEE Trans. Magnet., 35(3):2001–2006. http://dx.doi.org/10.1109/20.764900
|
[18] |
Ostovarzadeh, M.H., Sadeghi, S.H.H., Moini, R., 2011. Field distributions around a long opening in a metal¬lic half space excited by arbitrary-frequency alternating current-carrying wires of arbitrary shape. IEEE Trans. Magnet., 47(11):4600–4610. http://dx.doi.org/10.1109/TMAG.2011.2148176
|
[19] |
Ostovarzadeh, M.H., Sadeghi, S.H.H., Moini, R., et al., 2013. Field distributions around a rectangular crack in a metallic half-space excited by long current-carrying wires with arbitrary frequency. IEEE Trans. Magnet., 49(3):1108–1118. http://dx.doi.org/10.1109/TMAG.2012.2225440
|
[20] |
Presser, M., Barnaghi, P.M., Eurich, M., et al., 2009. The SENSEI project: integrating the physical world with the digital world of the network of the future. IEEE Commun. Mag., 47(4):1–4. http://dx.doi.org/10.1109/MCOM.2009.4907403
|
[21] |
Ravan, M., Sadeghi, S.H.H., Moini, R., 2006. Field distributions around arbitrary shape surface cracks in metals, induced by high-frequency alternating-current-carrying wires of arbitrary shape. IEEE Trans. Magnet., 42(9): 2208–2214. http://dx.doi.org/10.1109/TMAG.2006.877655
|
[22] |
Salemi, A.H., Sadeghi, S.H.H., Moini, R., 2004. Thin-skin analysis technique for interaction of arbitrary-shape in¬ducer field with long cracks in ferromagnetic metals. NDT & EInt., 37(6):471–479. http://dx.doi.org/10.1016/j.ndteint.2003.12.002
|
[23] |
Theodoulidis, T., Bowler, J., 2005. Eddy-current interaction of a long coil with a slot in a conductive plate. IEEE Trans. Magnet., 41(4):1238–1247. http://dx.doi.org/10.1109/TMAG.2005.844838
|
[24] |
Theodoulidis, T., Bowler, J.R., 2010. Interaction of an eddy-current coil with a right-angled conductive wedge. IEEE Trans. Magnet., 46(4):1034–1042. http://dx.doi.org/10.1109/TMAG.2009.2036724
|
[25] |
Tian, G.Y., Sophian, A., 2005. Reduction of lift-off effects for pulsed eddy current NDT. NDT & EInt., 38(4):319–324. http://dx.doi.org/10.1016/j.ndteint.2004.09.007
|
[26] |
Tian, G.Y., Zhao, Z.X., Baines, R.W., 1998. The research of inhomogeneity in eddy current sensors. . Sens Actuat. A, 69(2):148–151. http://dx.doi.org/10.1016/S0924-4247(98)00085-5
|
[27] |
Xu, E.X., Simkin, J., 2004. Total and reduced magnetic vector potentials and electrical scalar potential for eddy current calculation. IEEE Trans. Magnet., 40(2):938–940. http://dx.doi.org/10.1109/TMAG.2004.824887
|
[28] |
Zeng, Z.W., Liu, X., Deng, Y.M., et al., 2007. Reduced magnetic vector potential and electric scalar potential formulation for eddy current modeling. Przegl. Elektrotechn., 83(6):35–37.
|
[29] |
Zeng, Z.W., Udpa, L., Udpa, S.S., 2010. Finite-element model for simulation of ferrite-core eddy-current probe. IEEE Trans. Magnet., 46(3):905–909. http://dx.doi.org/10.1109/TMAG.2009.2034651
|
[30] |
Zhou, J., Lugg, M.C., Collins, R., 1999. A non-uniform model for alternating current field measurement of fa¬tigue cracks in metals. Int. J. Appl. Electrom. Mech., 10(3):221–235.
|
/
〈 | 〉 |