An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations

Xin LI, Jin SUN, Fu XIAO, Jiang-shan TIAN

PDF(601 KB)
PDF(601 KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (2) : 160-172.

An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations

Author information +
History +

Abstract

With shrinking technology, the increase in variability of process, voltage, and temperature (PVT) parameters significantly impacts the yield analysis and optimization for chip designs. Previous yield estimation algorithms have been limited to predicting either timing or power yield. However, neglecting the correlation between power and delay will result in significant yield loss. Most of these approaches also suffer from high computational complexity and long runtime. We suggest a novel bi-objective optimization framework based on Chebyshev affine arithmetic (CAA) and the adaptive weighted sum (AWS) method.Both power and timing yield are set as objective functions in this framework. The two objectives are optimized simultaneously to maintain the correlation between them. The proposed method first predicts the guaranteed probability bounds for leakage and delay distributions under the assumption of arbitrary correlations. Then a power-delay bi-objective optimization model is formulated by computation of cumulative distribution function (CDF) bounds. Finally, the AWS method is applied for power-delay optimization to generate a well-distributed set of Pareto-optimal solutions. Experimental results on ISCAS benchmark circuits show that the proposed bi-objective framework is capable of providing sufficient trade-off information between power and timing yield.

Keywords

Parameter variations / Parametric yield / Multi-objective optimization / Chebyshev affine / Adaptive weighted sum

Cite this article

Download citation ▾
Xin LI, Jin SUN, Fu XIAO, Jiang-shan TIAN. An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations. Front. Inform. Technol. Electron. Eng, 2016, 17(2): 160‒172

References

[1]
Banerjee, A., Chatterjee, A., 2015. Signature driven hierar¬chical post-manufacture tuning of RF systems for per¬formance and power. IEEE Trans. VLSI Syst., 23(2): 342–355. http://dx.doi.org/10.1109/TVLSI.2014.2309114
[2]
de Figueiredo, L.H., Stolfi, J., 2004. Affine arithmetic: con¬cepts and applications. Numer. Algor., 37(1):147–158. http://dx.doi.org/10.1023/B:NUMA.0000049462.70970. b6
[3]
Gong, F., Yu, H., He, L., 2011. Stochastic analog circuit be¬havior modeling by point estimation method. Proc. Int. Symp. on Physical Design, p.175–182. http://dx.doi.org/10.1145/1960397.1960437
[4]
Guerra-Gómez, I., Tlelo-Cuautle, E., de la Fraga, L., 2013. Richardson extrapolation-based sensitivity analysis in the multi-objective optimization of analog circuits. Appl. Math. Comput., 222:167–176. http://dx.doi.org/10.1016/j.amc.2013.07.059
[5]
Guerra-Gómez, I., Tlelo-Cuautle, E., de la Fraga, L., 2015. OCBA in the yield optimization of analog integrated circuits by evolutionary algorithms. IEEE Int. Symp. on Circuits & Systems, p.1933–1936. http://dx.doi.org/10.1109/ISCAS.2015.7169051
[6]
Hwang, E.J., Kim, W., Kim, Y.H., 2013. Timing yield slack for timing yield-constrained optimization and its application to statistical leakage minimization. IEEE Trans. VLSI Syst., 21(10):1783–1796. http://dx.doi.org/10.1109/TVLSI.2012.2220792
[7]
Kanj, R., Joshi, R., Nassif, S., 2010. Statistical leakage mod¬eling for accurate yield analysis the CDF matching method and its alternatives. ACM/IEEE Int. Symp. on Low-Power Electronics and Design, p.337–342.
[8]
Kashfi, F., Hatami, S., Pedram, M., 2011. Multi-objective optimization techniques for VLSI circuits. 12th Int. Symp. on Quality Electronic Design, p.156–163. http://dx.doi.org/10.1109/ISQED.2011.5770720
[9]
Kim, I.Y., de Weck, O.L., 2005. Adaptive weighted-sum method for bi-objective optimization: Pareto front gen¬eration. Struct. Multidiscipl. Optim., 29(2):149–158. http://dx.doi.org/10.1007/s00158-004-0465-1
[10]
Li, H., Lian, J., 2008. Multi-objective optimization of water¬sedimentation-power in reservoir based on Pareto- optimal solution. Trans. Tianjin Univ., 14(4):282–288. http://dx.doi.org/10.1007/s12209-008-0048-0
[11]
Liu, X.X., Tan, S.X.D., Palma-Rodriguez, A.A., et al., 2013. Performance bound analysis of analog circuits in frequency- and time-domain considering process variations . ACM Trans.Des. Autom. Electron. Syst., 19(1): 1–22. http://dx.doi.org/10.1145/2534395
[12]
Lourenço, N., Horta, N., 2012. GENOM-POF: multi-objective evolutionary synthesis of analog ICs with corners valida¬tion. Proc. 14th Int. Conf. on Genetic and Evolutionary Computation, p.1119–1126. http://dx.doi.org/10.1145/2330163.2330318
[13]
Mande, S.S., Chandorkar, A.N., Iwai, H., 2013. Computation-ally efficient methodology for statistical characterization and yield estimation due to inter- and intra-die process variations. 5th Asia Symp. on Quality Electronic Design, p.287–294. http://dx.doi.org/10.1109/ASQED.2013.6643602
[14]
Mani, M., Devgan, A., Orshansky, M., 2005. An efficient algorithm for statistical minimization of total power un¬der timing yield constraints. Proc. Design Automation Conf., p.309–314. http://dx.doi.org/10.1109/DAC.2005.193823
[15]
Mani, M., Devgan, A., Orshansky, M., et al., 2007. A statistical algorithm for power- and timing-limited parametric yield optimization of large integrated circuits. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst., 26(10):1790–1802. http://dx.doi.org/10.1109/TCAD.2007.895797
[16]
Orshansky, M., Bandyopadhyay, A., 2004. Fast statistical timing analysis handling arbitrary delay correlations. Proc. 41st Annual Design Automation Conf., p.337–342. http://dx.doi.org/10.1145/996566.996664
[17]
Radfar, M., Singh, J., 2014. A yield improvement technique in severe process, voltage, and temperature variations and extreme voltage scaling. Microelectron. Reliab., 54(12): 2813–2823. http://dx.doi.org/10.1016/j.microrel.2014.07.138
[18]
Rao, R., Devgan, A., Blaauw, D., et al., 2004a. Parametric yield estimation considering leakage variability. Proc. 41st Annual Design Automation Conf., p.442–447. http://dx.doi.org/10.1145/996566.996693
[19]
Rao, R., Srivastava, A., Blaauw, D., et al., 2004b. Statistical analysis of subthreshold leakage current for VLSI circuits. IEEE Trans. VLSI Syst., 12(2):131–139. http://dx.doi.org/10.1109/TVLSI.2003.821549
[20]
Saad, A., Frühwirth, T., Gervet, C., 2014. The p-box CDF-intervals: a reliable constraint reasoning with quan¬tifiable information. Theory Pract. Log. Programm., 14(4-5):461–475. http://dx.doi.org/10.1017/S1471068414000143
[21]
Sheng, Y., Xu, K., Wang, D., et al., 2013. Performance analysis of FET microwave devices by use of extended spectral- element time-domain method. Int. J. Electron., 100(5): 699–717. http://dx.doi.org/10.1080/00207217.2012.720947
[22]
Srinivas, N., Deb, K., 1994. Multi-objective optimization using non-dominated sorting in genetic algorithms. Evol. Comput., 2(3):221–248. http://dx.doi.org/10.1162/evco.<Date>1994.2.3.221</Date>
[23]
Srivastava, A., Chopra, K., Shah, S., et al., 2008. A novel approach to perform gate-level yield analysis and opti¬mization considering correlated variations in power and performance. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst., 27(2):272–285. http://dx.doi.org/10.1109/TCAD.2007.907227
[24]
Sun, J., Huang, Y., Li, J., ., 2008. Chebyshev affine arithmetic based parametric yield prediction under lim¬ited descriptions of uncertainty. Proc. Asia and South Pacific Design Automation Conf., p.531–536. http://dx.doi.org/10.1109/ASPDAC.2008.4484008
[25]
Ukhov, I., Eles, P., Peng, Z., 2014. Probabilistic analysis of power and temperature under process variation for elec¬tronic system design. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst., 33(6):931–944. http://dx.doi.org/10.1109/TCAD.2014.2301672
[26]
Visweswariah, C., 2003. Death, taxes and falling chips. Proc. Design Automation Conf., p.343–347. http://dx.doi.org/10.1109/DAC.2003.1219021
[27]
Wang, W.S., Orshansky, M., 2006. Robust estimation of par¬ametric yield under limited descriptions of uncertainty. Proc. IEEE/ACM Int. Conf. on Computer-Aided Design, p.884–890. http://dx.doi.org/10.1109/ICCAD.2006.320093
[28]
Williamson, R.C., Downs, T., 1990. Probabilistic arithmetic. I. numerical methods for calculating convolutions and de¬pendency bounds. Int. J. Approx. Reason., 4(2):89–158. http://dx.doi.org/10.1016/0888-613X(90)90022-T
[29]
Xie, L., Davoodi, A., 2008. Robust estimation of timing yield with partial statistical information on process variations. 9th Int. Symp. on Quality Electronic Design, p.156–161. http://dx.doi.org/10.1109/ISQED.2008.4479718
[30]
Zhu, W., Wu, Z., 2014. The stochastic ordering of mean- preserving transformations and its applications. Eur. J. Oper. Res., 239(3):802–809. http://dx.doi.org/10.1016/j.ejor.2014.06.017
PDF(601 KB)

Accesses

Citations

Detail

Sections
Recommended

/