Optimization of formation formulti-agent systems based onLQR
Chang-bin YU, Yin-qiu WANG, Jin-liang SHAO
Optimization of formation formulti-agent systems based onLQR
In this paper, three optimal linear formation control algorithms are proposed for first-order linear multiagent systems from a linear quadratic regulator (LQR) perspective with cost functions consisting of both interaction energy cost and individual energy cost, because both the collective object (such as formation or consensus) and the individual goal of each agent are very important for the overall system. First, we propose the optimal formation algorithm for first-order multi-agent systems without initial physical couplings. The optimal control parameter matrix of the algorithm is the solution to an algebraic Riccati equation (ARE). It is shown that the matrix is the sum of a Laplacian matrix and a positive definite diagonal matrix. Next, for physically interconnected multi-agent systems, the optimal formation algorithm is presented, and the corresponding parameter matrix is given from the solution to a group of quadratic equations with one unknown. Finally, if the communication topology between agents is fixed, the local feedback gain is obtained from the solution to a quadratic equation with one unknown. The equation is derived from the derivative of the cost function with respect to the local feedback gain. Numerical examples are provided to validate the effectiveness of the proposed approaches and to illustrate the geometrical performances of multi-agent systems.
Linear quadratic regulator (LQR) / Formation control / Algebraic Riccati equation (ARE) / Optimal control / Multi-agent systems
[1] |
Alefeld, G., Schneider, N., 1982. On square roots of Mmatrices. Linear Algebra Appl., 42:119–132. http://dx.doi.org/10.1016/0024-3795(82)90143-4
|
[2] |
Altafini, C., 2013. Consensus problems on networks with antagonistic interactions. IEEE Trans. Autom. Contr., 58(4):935–946. http://dx.doi.org/10.1109/TAC.2012.2224251
|
[3] |
Anderson, B.D.O., Moore, J.B., 2007. Optimal Control: Linear Quadratic Methods. Dover Publications, USA.
|
[4] |
Basiri, M., Bishop, A.N., Jensfelt, P., 2010. Distributed control of triangular formations with angle-only constraints. Syst. Contr. Lett., 59(2):147–154. http://dx.doi.org/10.1016/j.sysconle.2009.12.010
|
[5] |
Bishop, A.N., 2011. A very relaxed control law for bearingonly triangular formation control. Proc. 18th IFAC World Congress, p.5991–5998.
|
[6] |
Borrelli, F., Keviczky, T., 2008. Distributed LQR design for identical dynamically decoupled systems. IEEE Trans. Autom. Contr., 53(8):1901–1912. http://dx.doi.org/10.1109/TAC.2008.925826
|
[7] |
Cao, Y., Ren, W., 2010. Optimal linear-consensus algorithms: an LQR perspective. IEEE Trans. Syst. Man Cybern. Part B, 40(3):819–830. http://dx.doi.org/10.1109/TSMCB.2009.2030495
|
[8] |
Dimarogonas, D.V., Johansson, K.H., 2010. Stability analysis for multi-agent systems using the incidence matrix: quantized communication and formation control. Automatica, 46(4):695–700. http://dx.doi.org/10.1016/j.automatica.2010.01.012
|
[9] |
Ghadami, R., Shafai, B., 2013. Decomposition-based distributed control for continuous-time multi-agent systems. IEEE Trans. Autom. Contr., 58(1):258–264. http://dx.doi.org/10.1109/TAC.2012.2204153
|
[10] |
Ghadami, R., Shafai, B., 2014. Distributed observer-based LQR design for multi-agent systems. World Automation Congress, p.520–525. http://dx.doi.org/10.1109/WAC.2014.6936025
|
[11] |
Godsil, C., Royle, G.F., 2013. Algebraic Graph Theory. Springer, USA.
|
[12] |
Guo, J., Lin, Z., Cao, M.,
|
[13] |
Horn, R.A., Johnson, C.R., 1985. Matrix Analysis. Cambridge University Press, USA.
|
[14] |
Horn, R.A., Johnson, C.R., 1991. Topics in Matrix Analysis. Cambridge University Press, USA.
|
[15] |
Huang, H., Yu, C., Wu, Q., 2010. Distributed LQR design for multi-agent formations. Proc. 49th IEEE Conf. on Decision and Control, p.4535–4540. http://dx.doi.org/10.1109/CDC.2010.5716988
|
[16] |
Li, Z., Duan, Z., Lewis, F.L., 2014. Distributed robust consensus control of multi-agent systems with heterogeneous matching uncertainties. Automatica, 50(3):883–889. http://dx.doi.org/10.1016/j.automatica.2013.12.008
|
[17] |
Liu, T., Jiang, Z., 2014. Distributed nonlinear control of mobile autonomous multi-agents. Automatica, 50(4):1075–1086. http://dx.doi.org/10.1016/j.automatica.2014.02.023
|
[18] |
Movric, K.H., Lewis, F.L., 2014. Cooperative optimal control for multi-agent systems on directed graph topologies. IEEE Trans. Autom. Contr., 59(3):769–774. http://dx.doi.org/10.1109/TAC.2013.2275670
|
[19] |
Oh, K.K., Park, M.C., Ahn, H.S., 2015. A survey of multiagent formation control. Automatica., 53(3):424–440. http://dx.doi.org/10.1016/j.automatica.2014.10.022
|
[20] |
Qin, J., Gao, H., 2012. A sufficient condition for convergence of sampled-data consensus for double-integrator dynamics with nonuniform and time-varying communication delays. IEEE Trans. Autom. Contr., 57(9):2417–2422. http://dx.doi.org/10.1109/TAC.2012.2188425
|
[21] |
Qin, J., Gao, H., Zheng, W.X., 2011. Second-order consensus for multi-agent systems with switching topology and communication delay. Syst. Contr. Lett., 60(6):390–397. http://dx.doi.org/10.1016/j.sysconle.2011.03.004
|
[22] |
Ren, W., Beard, R.W., Atkins, E.M., 2007. Information consensus in multivehicle cooperative control. IEEE Contr. Syst. Mag., 27(2):71–82. http://dx.doi.org/10.1109/MCS.2007.338264
|
[23] |
Shi, G., Sou, K.C., Sandberg, H.,
|
[24] |
Xiao, F., Wang, L., Chen, J.,
|
[25] |
Yu, C., Hendrickx, J.M., Fidan, B.,
|
[26] |
Yu, C., Anderson, B.D.O., Dasgupta, S.,
|
[27] |
Zhang, H., Lewis, F.L., Das, A., 2011. Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback. IEEE Trans. Autom. Contr., 56(8):1948–1952. http://dx.doi.org/10.1109/TAC.2011.2139510
|
[28] |
Zhao, S., Lin, F., Peng, K.,
|
/
〈 | 〉 |