A review on the developments and space applications of mid- and long-wavelength infrared detection technologies
Yuying WANG, Jindong LI, Hezhi SUN, Xiang LI
A review on the developments and space applications of mid- and long-wavelength infrared detection technologies
Mid-wavelength infrared (MWIR) detection and long-wavelength infrared (LWIR) detection constitute the key technologies for space-based Earth observation and astronomical detection. The advanced ability of infrared (IR) detection technology to penetrate the atmosphere and identify the camouflaged targets makes it excellent for space-based remote sensing. Thus, such detectors play an essential role in detecting and tracking low-temperature and far-distance moving targets. However, due to the diverse scenarios in which space-based IR detection systems are built, the key parameters of IR technologies are subject to unique demands. We review the developments and features of MWIR and LWIR detectors with a particular focus on their applications in space-based detection. We conduct a comprehensive analysis of key performance indicators for IR detection systems, including the ground sampling distance (GSD), operation range, and noise equivalent temperature difference (NETD) among others, and their interconnections with IR detector parameters. Additionally, the influences of pixel distance, focal plane array size, and operation temperature of space-based IR remote sensing are evaluated. The development requirements and technical challenges of MWIR and LWIR detection systems are also identified to achieve high-quality space-based observation platforms.
Infrared detection / Space application / Mid- and long-wavelength infrared detection / Space-based Earth observation / Remote sensing
/
〈 | 〉 |