Domain knowledge enhanced deep learning for electrocardiogram arrhythmia classification
Jie SUN
Domain knowledge enhanced deep learning for electrocardiogram arrhythmia classification
Deep learning provides an effective way for automatic classification of cardiac arrhythmias, but in clinical decision-making, pure data-driven methods working as black-boxes may lead to unsatisfactory results. A promising solution is combining domain knowledge with deep learning. This paper develops a flexible and extensible framework for integrating domain knowledge with a deep neural network. The model consists of a deep neural network to capture the statistical pattern between input data and the ground-truth label, and a knowledge module to guarantee consistency with the domain knowledge. These two components are trained interactively to bring the best of both worlds. The experiments show that the domain knowledge is valuable in refining the neural network prediction and thus improves accuracy.
Domain knowledge / Cardiac arrhythmia / Electrocardiogram (ECG) / Clinical decision-making
/
〈 | 〉 |