Initial-condition-switched boosting extreme multistability and mechanism analysis in a memcapacitive oscillator
Bei CHEN, Quan XU, Mo CHEN, Huagan WU, Bocheng BAO
Initial-condition-switched boosting extreme multistability and mechanism analysis in a memcapacitive oscillator
Extreme multistability has seized scientists’ attention due to its rich diversity of dynamical behaviors and great flexibility in engineering applications. In this paper, a four-dimensional (4D) memcapacitive oscillator is built using four linear circuit elements and one nonlinear charge-controlled memcapacitor with a cosine inverse memcapacitance. The 4D memcapacitive oscillator possesses a line equilibrium set, and its stability periodically evolves with the initial condition of the memcapacitor. The 4D memcapacitive oscillator exhibits initial-condition-switched boosting extreme multistability due to the periodically evolving stability. Complex dynamical behaviors of period doubling/halving bifurcations, chaos crisis, and initial-condition-switched coexisting attractors are revealed by bifurcation diagrams, Lyapunov exponents, and phase portraits. Thereafter, a reconstructed system is derived via integral transformation to reveal the forming mechanism of the initial-condition-switched boosting extreme multistability in the memcapacitive oscillator. Finally, an implementation circuit is designed for the reconstructed system, and Power SIMulation (PSIM) simulations are executed to confirm the validity of the numerical analysis.
Extreme multistability / Initial-condition-switched boosting / Memcapacitive oscillator / Mechanism analysis
/
〈 | 〉 |