Three-dimensional face point cloud hole-filling algorithm based on binocular stereo matching and a B-spline
Yuan HUANG, Feipeng DA
Three-dimensional face point cloud hole-filling algorithm based on binocular stereo matching and a B-spline
When obtaining three-dimensional (3D) face point cloud data based on structured light, factors related to the environment, occlusion, and illumination intensity lead to holes in the collected data, which affect subsequent recognition. In this study, we propose a hole-filling method based on stereo-matching technology combined with a B-spline. The algorithm uses phase information acquired during raster projection to locate holes in the point cloud, simultaneously extracting boundary point cloud sets. By registering the face point cloud data using the stereo-matching algorithm and the data collected using the raster projection method, some supplementary information points can be obtained at the holes. The shape of the B-spline curve can then be roughly described by a few key points, and the control points are put into the hole area as key points for iterative calculation of surface reconstruction. Simulations using smooth ceramic cups and human face models showed that our model can accurately reproduce details and accurately restore complex shapes on the test surfaces. Simulation results indicated the robustness of the method, which is able to fill holes on complex areas such as the inner side of the nose without a prior model. This approach also effectively supplements the hole information, and the patched point cloud is closer to the original data. This method could be used across a wide range of applications requiring accurate facial recognition.
Three-dimensional (3D) point cloud / Hole filling / Stereo matching / B-spline
/
〈 | 〉 |