Traditional soliton erbium-doped fiber laser with InSe as saturable absorber
Xiaojuan LIU, Guomei WANG, Mingxiao ZHU, Kezhen HAN, Wenfei ZHANG, Huanian ZHANG
Traditional soliton erbium-doped fiber laser with InSe as saturable absorber
Indium selenide (InSe) is a typical layered metal-chalcogenide semiconductor that has potential for developing ultrafast optoelectronic devices. In this work, InSe-polyvinyl alcohol (InSe-PVA) film is employed as saturable absorber and prepared by mixing InSe nanosheets solution and polyvinyl alcohol solution. The nonlinear absorption properties of the InSe saturable absorber (InSe-SA) are investigated, showing that the nonsaturable absorption and modulation depth are 37.5% and 9.55%, respectively. Traditional soliton lasers are generated in erbium-doped fiber (EDF) laser-employed InSe as a mode-locker. The central wavelength and pulse duration of the traditional soliton pulse are 1568.73 nm and 2.06 ps, respectively, under a repetition rate of 1.731 MHz. The maximum average output power is 16.4 mW at the pump power of 413 mW. To the best of our knowledge, this is the first demonstration of a traditional soliton pulse with InSe as a mode-locker. The experimental results further demonstrate that InSe is an outstanding nonlinear absorption material in ultrafast fiber laser.
Fiber laser / Nanosheets / Traditional soliton
/
〈 | 〉 |