Recent advances inmultisensormultitarget tracking using random finite set

Kai DA, Tiancheng LI, Yongfeng ZHU, Hongqi FAN, Qiang FU

Front. Inform. Technol. Electron. Eng ›› 2021, Vol. 22 ›› Issue (1) : 5-24.

PDF(2402 KB)
Front. Inform. Technol. Electron. Eng All Journals
PDF(2402 KB)
Front. Inform. Technol. Electron. Eng ›› 2021, Vol. 22 ›› Issue (1) : 5-24. DOI: 10.1631/FITEE.2000266
Review
Review

Recent advances inmultisensormultitarget tracking using random finite set

Author information +
History +

Abstract

In this study, we provide an overview of recent advances in multisensor multitarget tracking based on the random finite set (RFS) approach. The fusion that plays a fundamental role in multisensor filtering is classified into data-level multitarget measurement fusion and estimate-level multitarget density fusion, which share and fuse local measurements and posterior densities between sensors, respectively. Important properties of each fusion rule including the optimality and sub-optimality are presented. In particular, two robust multitarget density-averaging approaches, arithmetic- and geometric-average fusion, are addressed in detail for various RFSs. Relevant research topics and remaining challenges are highlighted.

Keywords

Multitarget tracking / Multisensor fusion / Average fusion / Random finite set / Optimal fusion

Cite this article

Download citation ▾
Kai DA, Tiancheng LI, Yongfeng ZHU, Hongqi FAN, Qiang FU. Recent advances inmultisensormultitarget tracking using random finite set. Front. Inform. Technol. Electron. Eng, 2021, 22(1): 5‒24 https://doi.org/10.1631/FITEE.2000266
This is a preview of subscription content, contact us for subscripton.

RIGHTS & PERMISSIONS

2021 Zhejiang University Press
PDF(2402 KB)

Supplementary files

FITEE-0005-20002-KD_suppl_1 (1142 KB)

FITEE-0005-20002-KD_suppl_2 (99 KB)

896

Accesses

20

Citations

Detail

Sections
Recommended

/