Output tracking of delayed logical control networks withmulti-constraint
Ya-ting ZHENG, Jun-e FENG
Output tracking of delayed logical control networks withmulti-constraint
In this study, the output tracking of delayed logical control networks (DLCNs) with state and control constraints is further investigated. Compared with other delays, state-dependent delay updates its value depending on the current state values and a pseudo-logical function. Multiple constraints mean that state values are constrained in a nonempty set and the design of the controller is conditioned. Using the semi-tensor product of matrices, dynamical equations of DLCNs are converted into an algebraic description, and an equivalent augmented system is constructed. Based on the augmented system, the output tracking problem is transformed into a set stabilization problem. A deformation of the state transition matrix is computed, and a necessary and sufficient condition is derived for the output tracking of a DLCN with multi-constraint. This condition is easily verified by mathematical software. In addition, the admissible state-feedback controller is designed to enable the outputs of the DLCN to track the reference signal. Finally, theoretical results are illustrated by an example.
Logical control networks / Multi-constraint / Output tracking / Stabilization / State-dependent delay / Semi-tensor product
/
〈 | 〉 |