Post-exascale supercomputing: research opportunities abound

Zuo-ning CHEN, Jack DONGARRA, Zhi-wei XU

PDF(436 KB)
PDF(436 KB)
Front. Inform. Technol. Electron. Eng ›› 2018, Vol. 19 ›› Issue (10) : 1203-1208. DOI: 10.1631/FITEE.1830000
Editorial
Editorial

Post-exascale supercomputing: research opportunities abound

Author information +
History +

Cite this article

Download citation ▾
Zuo-ning CHEN, Jack DONGARRA, Zhi-wei XU. Post-exascale supercomputing: research opportunities abound. Front. Inform. Technol. Electron. Eng, 2018, 19(10): 1203‒1208 https://doi.org/10.1631/FITEE.1830000

References

[1]
Asch M, Moore T, Badia R, , 2018. Big data and extreme-scale computing: pathways to convergence—toward a shaping strategy for a future software and data ecosystem for scientific inquiry. Int J High Perform Comput Appl, 32(4):435–479. https://doi.org/10.1177/1094342018778123
[2]
Cambricon, 2018. MLU100-Cambricon. https://en.wikichip. org/wiki/cambricon/mlu/mlu100 [Accessed on Oct. 15, 2018].
[3]
Feldman M, 2018. Europeans Budget 1.4 Billion Euros to Build Next-Generation Supercomputers. https://www. top500.org/news/europeans-budget-14-billion-euros-tobuild-next-generation-supercomputers/ [Accessed on Oct. 15, 2018].
[4]
Hu XS, Niemier M, 2018. Cross-layer efforts for energyefficient computing: towards peta operations per second per watt. Front Inform Technol Electron Eng, 19(10): 1209–1223. https://doi.org/10.1631/FITEE.1800466
[5]
Jun Y, Gavrilov M, Bechhoefer J, 2014. High-precision test of Landauer’s principle in a feedback trap. Phys Rev Lett, 113(19):190601. https://doi.org/10.1103/PhysRevLett.113.190601
[6]
Landauer R, 1961. Irreversibility and heat generation in the computing process. IBM J Res Devel, 5(3):183–191.
[7]
Liao XK, Lu K, Yang CQ, , 2018. Moving from exascale to zettascale computing: challenges and techniques. Front Inform Technol Electron Eng, 19(10):1236–1244. https://doi.org/10.1631/FITEE.1800494
[8]
Mo ZY, 2018. Extreme-scale parallel computing: bottlenecks and strategies. Front Inform Technol Electron Eng, 19(10): 1251–1260. https://doi.org/10.1631/FITEE.1800421
[9]
Panda DK, Lu XY, Subramoni H, 2018. Networking and communication challenges for post-exascale systems. Front Inform Technol Electron Eng, 19(10):1230–1235. https://doi.org/10.1631/FITEE.1800631
[10]
Strohmaier E, 2018. Highlights of the 51st TOP500 list. https://www.top500.org/static/media/uploads/top500_ppt_201806.pdf [Accessed on Oct. 15, 2018].
[11]
Sun NH, Bao YG, Fan DR, 2018. The rise of high-throughput computing. Front Inform Technol Electron Eng, 19(10): 1245–1250. https://doi.org/10.1631/FITEE.1800501
[12]
Xie XH, Jia X, 2018. Exploring high-performance processor architecture beyond the exascale. Front Inform Technol Electron Eng, 19(10):1224–1229. https://doi.org/10.1631/FITEE.1800424
[13]
Xu Z, Chi X, Xiao N, 2016. High-performance computing environment: a review of twenty years of experiments in China. Natl Sci Rev, 3(1):36–48. http://dx.doi.org/10.1093/nsr/nww001
[14]
Yang GW, Fu HH, 2018. Application software beyond exascale: challenges and possible trends. Front Inform Technol Electron Eng, 19(10):1267–1272. https://doi.org/10.1631/FITEE.1800459
[15]
Zhai JD, Chen WG, 2018. A vision of post-exascale programming. Front Inform Technol Electron Eng, 19(10): 1261–1266. https://doi.org/10.1631/FITEE.1800442

RIGHTS & PERMISSIONS

2018 Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature
PDF(436 KB)

Accesses

Citations

Detail

Sections
Recommended

/