An online error calibration method for spaceflight TT&C systems based on LEO-ground DDGPS

Qiao WANG, Xiao-jun JIN, Wei ZHANG, Shi-ming MO, Zhao-bin XU, Zhong-he JIN

PDF(648 KB)
PDF(648 KB)
Front. Inform. Technol. Electron. Eng ›› 2019, Vol. 20 ›› Issue (6) : 829-841. DOI: 10.1631/FITEE.1800308
Orginal Article
Orginal Article

An online error calibration method for spaceflight TT&C systems based on LEO-ground DDGPS

Author information +
History +

Abstract

To overcome the shortcomings of the traditional measurement error calibration methods for spaceflight telemetry, tracking and command (TT&C) systems, an online error calibration method based on low Earth orbit satellite-to-ground doubledifferential GPS (LEO-ground DDGPS) is proposed in this study. A fixed-interval smoother combined with a pair of forward and backward adaptive robust Kalman filters (ARKFs) is adopted to solve the LEO-ground baseline, and the ant colony optimization (ACO) algorithm is used to deal with the ambiguity resolution problem. The precise baseline solution of DDGPS is then used as a comparative reference to calibrate the systematic errors in the TT&C measurements, in which the parameters of the range error model are solved by a batch least squares algorithm. To validate the performance of the new online error calibration method, a hardware-in-the-loop simulation platform is constructed with independently developed spaceborne dual-frequency GPS receivers and a Spirent GPS signal generator. The simulation results show that with the fixed-interval smoother, a baseline estimation accuracy (RMS, single axis) of better than 10 cm is achieved. Using this DDGPS solution as the reference, the systematic error of the TT&C ranging system is effectively calibrated, and the residual systematic error is less than 5 cm.

Keywords

Spaceflight / low Earth orbit (LEO) / Filter / Optimization / Calibration

Cite this article

Download citation ▾
Qiao WANG, Xiao-jun JIN, Wei ZHANG, Shi-ming MO, Zhao-bin XU, Zhong-he JIN. An online error calibration method for spaceflight TT&C systems based on LEO-ground DDGPS. Front. Inform. Technol. Electron. Eng, 2019, 20(6): 829‒841 https://doi.org/10.1631/FITEE.1800308

RIGHTS & PERMISSIONS

2019 Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature
PDF(648 KB)

Accesses

Citations

Detail

Sections
Recommended

/