Dynamicmodeling of awave glider

Chun-lin ZHOU, Bo-xing WANG, Hong-xiang ZHOU, Jing-lan LI, Rong XIONG

PDF(5157 KB)
PDF(5157 KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (9) : 1295-1304. DOI: 10.1631/FITEE.1700294
Article
Article

Dynamicmodeling of awave glider

Author information +
History +

Abstract

We propose a method to establish a dynamic model for a waveglider, a wave-propelled sea surface vehicle that can make use ofwave energy to obtain thrust. The vehicle, composed of a surface floatand a submerged glider in sea water, is regarded as a two-particlesystem. Kane’s equations are used to establish the dynamic model.To verify the model, the design of a testing prototypeis proposed and pool trials are conducted. The speeds of the vehicleunder different sea conditions can be computed using the model, whichis verified by pool trials. The optimal structure parameters usefulfor vehicle designs can also be obtained from the model. We illustratehow to build an analytical dynamics model for the wave glider, whichis a crucial basis for the vehicle’s motion control. The dynamicsmodel also provides foundations for an off-line simulation of vehicleperformance and the optimization of its mechanical designs.

Keywords

Wave-propelled vehicle / Dynamicmodeling / Sea surface vehicle / Waveglider

Cite this article

Download citation ▾
Chun-lin ZHOU, Bo-xing WANG, Hong-xiang ZHOU, Jing-lan LI, Rong XIONG. Dynamicmodeling of awave glider. Front. Inform. Technol. Electron. Eng, 2017, 18(9): 1295‒1304 https://doi.org/10.1631/FITEE.1700294

References

[1]
Caiti , A., Calabro , V., Grammatico , S., , 2011. Lagrangian modeling of the underwater wave glider. MTS/IEEE Oceans , p.1–6. https://doi.org/10.1109/Oceans-Spain.2011.6003429
[2]
Cameron , S., 1994. Obstacle avoidance and pathplanning.Ind. Robot, 21(5):9–14. https://doi.org/10.1108/EUM0000000004159
[3]
Carragher , P., Hine , G., Legh-Smith , P., 2013. A new platform for offshore exploration and production. Oilfield Rev., 25(4):40–50.
[4]
Cong , B., Cui , H.L., Liu , Z., 2009. Modelingand virtual simulation in random ocean waves. J. Xi’an Technol. Univ., 29(5):475–478 (in Chinese).
[5]
Daugherty , R.L., Franzini , J.B., 1997. Fluid Mechanics with Engineering Applications. McGraw-Hill, New York, p.192–198.
[6]
Hine , R., Willcox , S., Hine , G., , 2009. The wave glider: a wave-powered autonomous marine vehicle. MTS/IEEE Oceans, p.1–6. https://doi.org/10.23919/OCEANS.2009.5422129
[7]
Kraus , N., Bingham , B., 2011. Estimation of wave glider dynamics for precise positioning. MTS/IEEE Oceans, p.1–9. https://doi.org/10.23919/OCEANS.2011.6107207
[8]
Liu , J.Y., Li , Y.H., Yi , H., , 2011. The modeling and analysis of wave powering surface vehicle. MTS/IEEE Oceans, p.1–6. https://doi.org/10.23919/OCEANS.2011.6106971
[9]
Lolla , T., Ueckermann , M.P., Yiˇgit , K., , 2012. Path planning in time dependent flow fields using level set methods. IEEE Int. Conf. on Robotics and Automation, p.166–173. https://doi.org/10.1109/ICRA.2012.6225364
[10]
Ma , X.F., Xu , X.R., Li , D.G., 1988. A recursivealgorithm of robot dynamics based on the Kane’s dynamical equation. J. Beijing Univ. Iron SteelTechnol., 10(2):198–208 (in Chinese). https://doi.org/10.13374/j.issn1001-053x.1988.02.030
[11]
Manley , J., Hine , G., 2016. Unmanned surface vessels (USVs) as tow platforms: waveglider experience and results. MTS/IEEEOceans, p.1–5https://doi.org/10.1109/OCEANS.2016.7761234
[12]
Manley , J., Willcox , S., 2010. The wave glider: a new concept for deploying ocean instrumentation. IEEE Instrum. Meas. Mag., 13(6):8–13. https://doi.org/10.1109/MIM.2010.5669607
[13]
Ngo , P., Al-Sabban , W., Thomas , J., , 2013. An analysis of regression models for predicting the speed of a waveglider autonomous surface vehicle. Proc.Australasian Conf. on Robotics and Automation, p.1–10.
[14]
Ngo , P.,Das , J., Ogle , J., , 2014. Predictingthe speed of a wave glider autonomous surface vehicle from wave modeldata. IEEE/RSJ Int. Conf. on IntelligentRobots and Systems, p.2250–2256. https://doi.org/10.1109/IROS.2014.6942866
[15]
Smith , R.N., Das , J., Hine , G., , 2011. Predictingwave glider speed from environmental measurements. MTS/IEEE Oceans, p.1–8. https://doi.org/10.23919/OCEANS.2011.6106989
[16]
Song , H., Zhang , J.H., Yang , P.,, 2016. Modeling of a dynamic dual-input dual-output fast steering mirrorsystem. Front.Inform. Technol. Electron. Eng., in press. https://doi.org/10.1631/FITEE.1601221
[17]
Tarn , T.J., Shoults , G.A., Yang , S.P., 1996. A dynamicmodel of an underwater vehicle with a robotic manipulator using Kane’smethod. Auton.Robots, 3(2-3):269–283. https://doi.org/10.1007/BF00141159
[18]
Wiggins , S., Manley , J., Brager , E., , 2010. Monitoringmarine mammal acoustics using wave glider. MTS/IEEE Oceans, p.1–4. https://doi.org/10.1109/OCEANS.2010.5664537
[19]
Zhang , Y.W., Kieft , B., Rueda , C., , 2016. Autonomousfront tracking by a wave glider. MTS/IEEEOceans, p.1–4. https://doi.org/10.1109/OCEANS.2016.7761070
[20]
Zhou , C.L., Low , K.H., 2014. On-line optimization of biomimetic undulatory swimmingby an experimentbased approach. J. Bion. Eng., 11(2):213–225. https://doi.org/10.1016/S1672-6529(14)60042-1

RIGHTS & PERMISSIONS

2017 Zhejiang University and Springer-Verlag GmbHGermany
PDF(5157 KB)

Accesses

Citations

Detail

Sections
Recommended

/