Dynamicmodeling of awave glider
Chun-lin ZHOU, Bo-xing WANG, Hong-xiang ZHOU, Jing-lan LI, Rong XIONG
Dynamicmodeling of awave glider
We propose a method to establish a dynamic model for a waveglider, a wave-propelled sea surface vehicle that can make use ofwave energy to obtain thrust. The vehicle, composed of a surface floatand a submerged glider in sea water, is regarded as a two-particlesystem. Kane’s equations are used to establish the dynamic model.To verify the model, the design of a testing prototypeis proposed and pool trials are conducted. The speeds of the vehicleunder different sea conditions can be computed using the model, whichis verified by pool trials. The optimal structure parameters usefulfor vehicle designs can also be obtained from the model. We illustratehow to build an analytical dynamics model for the wave glider, whichis a crucial basis for the vehicle’s motion control. The dynamicsmodel also provides foundations for an off-line simulation of vehicleperformance and the optimization of its mechanical designs.
Wave-propelled vehicle / Dynamicmodeling / Sea surface vehicle / Waveglider
[1] |
Caiti , A., Calabro , V., Grammatico , S.,
|
[2] |
Cameron , S., 1994. Obstacle avoidance and pathplanning.Ind. Robot, 21(5):9–14. https://doi.org/10.1108/EUM0000000004159
|
[3] |
Carragher , P., Hine , G., Legh-Smith , P.,
|
[4] |
Cong , B., Cui , H.L., Liu , Z., 2009. Modelingand virtual simulation in random ocean waves. J. Xi’an Technol. Univ., 29(5):475–478 (in Chinese).
|
[5] |
Daugherty , R.L., Franzini , J.B., 1997. Fluid Mechanics with Engineering Applications. McGraw-Hill, New York, p.192–198.
|
[6] |
Hine , R., Willcox , S., Hine , G.,
|
[7] |
Kraus , N., Bingham , B., 2011. Estimation of wave glider dynamics for precise positioning. MTS/IEEE Oceans, p.1–9. https://doi.org/10.23919/OCEANS.2011.6107207
|
[8] |
Liu , J.Y., Li , Y.H., Yi , H.,
|
[9] |
Lolla , T., Ueckermann , M.P., Yiˇgit , K.,
|
[10] |
Ma , X.F., Xu , X.R., Li , D.G., 1988. A recursivealgorithm of robot dynamics based on the Kane’s dynamical equation. J. Beijing Univ. Iron SteelTechnol., 10(2):198–208 (in Chinese). https://doi.org/10.13374/j.issn1001-053x.1988.02.030
|
[11] |
Manley , J., Hine , G., 2016. Unmanned surface vessels (USVs) as tow platforms: waveglider experience and results. MTS/IEEEOceans, p.1–5https://doi.org/10.1109/OCEANS.2016.7761234
|
[12] |
Manley , J., Willcox , S., 2010. The wave glider: a new concept for deploying ocean instrumentation. IEEE Instrum. Meas. Mag., 13(6):8–13. https://doi.org/10.1109/MIM.2010.5669607
|
[13] |
Ngo , P., Al-Sabban , W., Thomas , J.,
|
[14] |
Ngo , P.,Das , J., Ogle , J.,
|
[15] |
Smith , R.N., Das , J., Hine , G.,
|
[16] |
Song , H., Zhang , J.H., Yang , P.,
|
[17] |
Tarn , T.J., Shoults , G.A., Yang , S.P., 1996. A dynamicmodel of an underwater vehicle with a robotic manipulator using Kane’smethod. Auton.Robots, 3(2-3):269–283. https://doi.org/10.1007/BF00141159
|
[18] |
Wiggins , S., Manley , J., Brager , E.,
|
[19] |
Zhang , Y.W., Kieft , B., Rueda , C.,
|
[20] |
Zhou , C.L., Low , K.H., 2014. On-line optimization of biomimetic undulatory swimmingby an experimentbased approach. J. Bion. Eng., 11(2):213–225. https://doi.org/10.1016/S1672-6529(14)60042-1
|
/
〈 | 〉 |