Emerging theories and technologies on computational imaging
Xue-mei HU, Jia-min WU, Jin-li SUO, Qiong-hai DAI
Emerging theories and technologies on computational imaging
Computational imaging describes the whole imaging process fromthe perspective of light transport and information transmission, featurestraditional optical computing capabilities, and assists in breakingthrough the limitations of visual information recording. Progressin computational imaging promotes the development of diverse basicand applied disciplines. In this review, we provide an overview ofthe fundamental principles and methods in computational imaging, thehistory of this field, and the important roles that it plays in thedevelopment of science. We review the most recent and promising advancesin computational imaging, from the perspective of different dimensionsof visual signals, including spatial dimension, temporal dimension,angular dimension, spectral dimension, and phase. We also discusssome topics worth studying for future developments in computationalimaging.
Computational imaging / Multi-scaleand multi-dimensional / Super-resolution / Femto-photography / 3D reconstruction / Hyperspectral imaging
[1] |
Assion, A., Baumert, T., Bergt, M.,
|
[2] |
Backman, V., Wallace, M.B., Perelman, L.,
|
[3] |
Bao, J., Bawendi, M.G., 2015. A colloidal quantum dot spectrometer. Nature, 523(7558):67–70. https://doi.org/10.1038/nature14576
|
[4] |
Bifano, T., 2011. Adaptive imaging: MEMS deformablemirrors. Nat. Photon., 5(1):21–23. https://doi.org/10.1038/nphoton.2010.297
|
[5] |
Bina, M., Magatti, D., Molteni, M.,
|
[6] |
Brady, D., Gehm, M., Stack, R.,
|
[7] |
Brenner, D.J., Hall, E.J., 2007. Computed tomography—an increasing source of radiationexposure. New Engl.J. Med., 357:2277–2284. https://doi.org/10.1056/NEJMra072149
|
[8] |
Candès, E.J., Romberg, J., Tao, T., 2006. Robustuncertainty principles: exact signal reconstruction from highly incompletefrequency information. IEEE Trans. Inform. Theory, 52(2):489–509. https://doi.org/10.1109/TIT.2005.862083
|
[9] |
Chaigne, T., Katz, O., Boccara, A.C.,
|
[10] |
Chakrabarti, A., Zickler, T., 2011. Statistics of real-world hyperspectral images. IEEE Conf. on Computer Vision and Pattern Recognition, p.193–200. https://doi.org/10.1109/CVPR.2011.5995660
|
[11] |
Chao, T.H., Zhou, H., Xia, X.,
|
[12] |
Charles, A.S., Olshausen, B.A., Rozell, C.J., 2011. Learningsparse codes for hyperspectral imagery. IEEE J. Sel. Topics Signal Process., 5(5):963–978. https://doi.org/10.1109/JSTSP.2011.2149497
|
[13] |
Choi, W., Fang-Yen, C., Badizadegan, K.R.,
|
[14] |
Cotte, Y., Toy, F., Jourdain, P.,
|
[15] |
Cuche, E., Bevilacqua, F., Depeursinge, C., 1999. Digitalholography for quantitative phase-contrast imaging. Opt. Lett., 24(5):291–293. https://doi.org/10.1364/OL.24.000291
|
[16] |
Delalieux, S., Auwerkerken, A., Verstraeten, W.W.,
|
[17] |
Descour, M., Dereniak, E., 1995. Computed-tomography imaging spectrometer: experimentalcalibration and reconstruction results. Appl. Opt., 34(22):4817–4826. https://doi.org/10.1364/AO.34.004817
|
[18] |
Diaspro, A., Chirico, G., Collini, M., 2005. Two-photonfluorescence excitation and related techniques in biological microscopy. Q. Rev. Biophys., 38(02):97–166. https://doi.org/10.1017/S0033583505004129
|
[19] |
Ding, W., Wang, Y., Chen, H.,
|
[20] |
Ferguson, R., Phillips, W., 1967. High-resolution nuclear magnetic resonance spectroscopy. Science, 157(3786): 257–267. https://doi.org/10.1126/science.157.3786.257
|
[21] |
Fienup, J.R., 1982. Phase retrieval algorithms: a comparison. Appl. Opt., 21(15):2758–2769. https://doi.org/10.1364/AO.21.002758
|
[22] |
Fienup, J.R., 2013. Phase retrieval algorithms: a personaltour [invited]. Appl. Opt., 52(1):45–56. https://doi.org/10.1364/AO.52.000045
|
[23] |
Frenkel, K.A., 2010. Panning for science. Science, 330(6005):748–749. https://doi.org/10.1126/science.330.6005.748
|
[24] |
Gatti, A., Brambilla, E., Bache, M.,
|
[25] |
Gebbie, H., 1961. Molecular emission spectroscopy from2μ to 12μ by a michelson interferometer. Nature, 191:264–265. https://doi.org/10.1038/191264a0
|
[26] |
Goda, K., Tsia, K., Jalali, B., 2009. Serial time-encodedamplified imaging for real-time observation of fast dynamic phenomena. Nature, 458(7242):1145–1149. https://doi.org/10.1038/nature07980
|
[27] |
Greenbaum, A., Luo, W., Su, T.W.,
|
[28] |
Gustafsson, M.G., 2005. Nonlinear structured-illuminationmicroscopy: wide-field fluorescence imaging with theoretically unlimitedresolution. PNAS, 102(37):13081–13086. https://doi.org/10.1073/pnas.0406877102
|
[29] |
Heide, F., Hullin, M.B., Gregson, J.,
|
[30] |
Hein, B., Willig, K.I., Hell, S.W., 2008. Stimulatedemission depletion (STED) nanoscopy of a fluorescent protein-labeledorganelle inside a living cell. PNAS, 105(38):14271–14276. https://doi.org/10.1073/pnas.0807705105
|
[31] |
Hell, S.W., Wichmann, J., 1994. Breaking the diffraction resolution limit by stimulatedemission: stimulatedemission-depletion fluorescence microscopy. Opt. Lett., 19(11):780–782. https://doi.org/10.1364/OL.19.000780
|
[32] |
Helmchen, F., Denk, W., 2005. Deep tissue two-photon microscopy. Nat. Meth., 2(12):932–940. https://doi.org/10.1038/nmeth818
|
[33] |
Hess, S.T., Girirajan, T.P., Mason, M.D., 2006. Ultrahighresolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91(11):4258–4272. https://doi.org/10.1529/biophysj.106.091116
|
[34] |
Horton, N.G., Wang, K., Kobat, D.,
|
[35] |
Howard, S.S., Straub, A., Horton, N.G.,
|
[36] |
Jahr, W., Schmid, B., Schmied, C.,
|
[37] |
Ji, N., Milkie, D.E., Betzig, E., 2010. Adaptiveoptics via pupil segmentation for high-resolution imaging in biologicaltissues. Nat. Meth., 7(2):141–147. https://doi.org/10.1038/nmeth.1411
|
[38] |
Kester, R.T., Bedard, N., Gao, L.,
|
[39] |
Kim, T., Zhou, R., Mir, M.,
|
[40] |
Levoy, M., Hanrahan, P., 1996. Light field rendering. Proc.23rd Annual Conf. on Computer Graphics and Interactive Techniques, p.31–42. https://doi.org/10.1145/237170.237199
|
[41] |
Levoy, M., Ng, R., Adams, A.,
|
[42] |
Lin, X., Liu, Y., Wu, J.,
|
[43] |
Lin, X., Wu, J., Zheng, G.,
|
[44] |
Ma, C., Cao, X., Tong, X.,
|
[45] |
Manley, S., Gillette, J.M., Patterson, G.H.,
|
[46] |
Marks, D.L., Son, H.S., Kim, J.,
|
[47] |
Morris, P.A., Aspden, R.S., Bell, J.E.,
|
[48] |
Nakagawa, K., Iwasaki, A., Oishi, Y.,
|
[49] |
Neifeld, M.A., Shankar, P., 2003. Feature-specific imaging. Appl. Opt., 42(17):3379–3389. https://doi.org/10.1364/AO.42.003379
|
[50] |
Ng, R., Levoy, M., Brédif, M.,
|
[51] |
Orth, A., Tomaszewski, M.J., Ghosh, R.N.,
|
[52] |
Pal, H., Neifeld, M., 2003. Multispectral principal component imaging. Opt. Expr., 11(18):2118–2125. https://doi.org/10.1364/OE.11.002118
|
[53] |
Popescu, G., Deflores, L.P., Vaughan, J.C.,
|
[54] |
Prevedel, R., Yoon, Y.G., Hoffmann, M.,
|
[55] |
Rust, M.J., Bates, M., Zhuang, X., 2006. Sub-diffractionlimitimaging by stochastic optical reconstruction microscopy (STORM). Nat. Meth., 3(10):793–796. https://doi.org/10.1038/nmeth929
|
[56] |
Ryle, M., 1972. The 5-km radio telescope at Cambridge. Nature, 239:435–438. https://doi.org/10.1038/239435a0
|
[57] |
Schermelleh, L., Heintzmann, R., Leonhardt, H., 2010. A guideto super-resolution fluorescence microscopy. J. Cell Biol., 190(2):165–175. https://doi.org/10.1083/jcb.201002018
|
[58] |
Stoklasa, B., Motka, L., Rehacek, J.,
|
[59] |
Strack, R., 2016. Highly multiplexed imaging. Nat. Meth., 13(1), Article 35. https://doi.org/10.1038/nmeth.3706
|
[60] |
Suo, J., Bian, L., Chen, F.,
|
[61] |
Teague, M.R., 1983. Deterministic phase retrieval: a green’sfunction solution. JOSA, 73(11):1434–1441. https://doi.org/10.1364/JOSA.73.001434
|
[62] |
van Tilbeurgh, H., Egloff, M., Martinez, C.,
|
[63] |
Vellekoop, I., Lagendijk, A., Mosk, A., 2010. Exploitingdisorder for perfect focusing. Nat. Photon., 4(5):320–322. https://doi.org/10.1038/nphoton.2010.3
|
[64] |
Velten, A., Willwacher, T., Gupta, O.,
|
[65] |
Velten, A., Wu, D., Jarabo, A.,
|
[66] |
Waller, L., Kou, S.S., Sheppard, C.J.,
|
[67] |
Waller, L., Tian, L., Barbastathis, G., 2010b. Transportof intensity phase-amplitude imaging with higher order intensity derivatives. Opt. Expr., 18(12):12552–12561. https://doi.org/10.1364/OE.18.012552
|
[68] |
Waller, L., Situ, G., Fleischer, J.W., 2012. Phase-spacemeasurement and coherence synthesis of optical beams. Nat. Photon., 6(7):474–479. https://doi.org/10.1038/nphoton.2012.144
|
[69] |
Wang, L.V., Hu, S., 2012. Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 335(6075):1458–1462. https://doi.org/10.1126/science.1216210
|
[70] |
Wilburn, B., Joshi, N., Vaish, V.,
|
[71] |
Willett, R., Gehm, M.E., Brady, D.J., 2007. Multiscale reconstructionfor computational spectral imaging. Proc.Electronic Imaging, Article 64980L. https://doi.org/10.1117/12.715711
|
[72] |
Wong, G., 2009. Snapshot hyperspectral imaging andpractical applications. J. Phys., 178(1), Article 012048. https://doi.org/10.1088/1742-6596/178/1/012048
|
[73] |
Zernike, F., 1955. How I discovered phase contrast. Science, 121(3141):345–349.
|
[74] |
Zheng, G., Horstmeyer, R., Yang, C., 2013. Wide-field,high-resolution Fourier ptychographic microscopy. Nat. Photon., 7(9):739–745. https://doi.org/10.1038/nphoton.2013.187
|
/
〈 | 〉 |