Adaptive network fuzzy inference system based navigation controller for mobile robot

Panati SUBBASH, Kil To CHONG

PDF(1169 KB)
PDF(1169 KB)
Front. Inform. Technol. Electron. Eng ›› 2019, Vol. 20 ›› Issue (2) : 141-151. DOI: 10.1631/FITEE.1700206
Research Article
Research Article

Adaptive network fuzzy inference system based navigation controller for mobile robot

Author information +
History +

Abstract

Autonomous navigation of a mobile robot in an unknown environment with highly cluttered obstacles is a fundamental issue in mobile robotics research. We propose an adaptive network fuzzy inference system (ANFIS) based navigation controller for a differential drive mobile robot in an unknown environment with cluttered obstacles. Ultrasonic sensors are used to capture the environmental information around the mobile robot. A training data set required to train the ANFIS controller has been obtained by designing a fuzzy logic based navigation controller. Additive white Gaussian noise has been added to the sensor readings and fed to the trained ANFIS controller during mobile robot navigation, to account for the effect of environmental noise on sensor readings. The robustness of the proposed navigation controller has been evaluated by navigating the mobile robot in three different environments. The performance of the proposed controller has been verified by comparing the travelled path length/efficiency and bending energy obtained by the proposed method with reference mobile robot navigation controllers, such as neural network, fuzzy logic, and ANFIS. Simulation results presented in this paper show that the proposed controller has better performance compared with reference controllers and can successfully navigate in different environments without any collision with obstacles.

Keywords

Adaptive network fuzzy inference system / Additive white Gaussian noise / Autonomous navigation / Mobile robot

Cite this article

Download citation ▾
Panati SUBBASH, Kil To CHONG. Adaptive network fuzzy inference system based navigation controller for mobile robot. Front. Inform. Technol. Electron. Eng, 2019, 20(2): 141‒151 https://doi.org/10.1631/FITEE.1700206

RIGHTS & PERMISSIONS

2019 Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature
PDF(1169 KB)

Accesses

Citations

Detail

Sections
Recommended

/