混合-增强智能:协作与认知

南宁 郑, 子熠 刘, 鹏举 任, 永强 马, 仕韬 陈, 思雨 余, 建儒 薛, 霸东 陈, 飞跃 王

PDF(3943 KB)
PDF(3943 KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (2) : 153-179. DOI: 10.1631/FITEE.1700053
Review
Review

混合-增强智能:协作与认知

Author information +
History +

Abstract

人工智能追求的长期目标是使机器能像人一样学习和思考。由于人类面临的许多问题具有不确定性、脆弱性和开放性,任何智能程度的机器都无法完全取代人类,这就需要将人的作用或人的认知模型引入到人工智能系统中,形成混合-增强智能的形态,这种形态是人工智能或机器智能的可行的、重要的成长模式。混合-增强智能可以分为两类基本形式:一类是人在回路的人机协同混合增强智能,另一类是将认知模型嵌入机器学习系统中,形成基于认知计算的混合智能。本文讨论人机协同的混合-增强智能的基本框架,以及基于认知计算的混合-增强智能的基本要素:直觉推理与因果模型、记忆和知识演化;特别论述了直觉推理在复杂问题求解中的作用和基本原理,以及基于记忆与推理的视觉场景理解的认知学习网络;阐述了竞争-对抗式认知学习方法,并讨论了其在自动驾驶方面的应用;最后给出混合-增强智能在相关领域的典型应用。

Keywords

人-机协同 / 混合增强智能 / 认知计算 / 直觉推理 / 因果模型 / 认知映射 / 视觉场景理解 / 自主驾驶汽车

Cite this article

Download citation ▾
南宁 郑, 子熠 刘, 鹏举 任, 永强 马, 仕韬 陈, 思雨 余, 建儒 薛, 霸东 陈, 飞跃 王. 混合-增强智能:协作与认知. Front. Inform. Technol. Electron. Eng, 2017, 18(2): 153‒179 https://doi.org/10.1631/FITEE.1700053

References

[1]
Ando , R.K., 2007. Biocreative II gene mention tagging system at IBM Watson. Proc. 2nd BioCreative Challenge Evaluation Workshop, p.101–103.
[2]
Ando , R.K., Dredze , M., Zhang , T., 2005. Trec 2005 genomics track experiments at IBM Watson. 14th Text REtrieval Conf., p.1–10.
[3]
Atif , Y., Mathew , S.S., 2015. Building a smart campus to support ubiquitous learning. J. Amb. Intell. Human. Comput., 6(2):1–16. http://dx.doi.org/10.1007/s12652-014-0226-y
[4]
Ball , M.O., Chen , C.Y., Hoffman , R., , 2001. Collaborative decision making in air traffic management: current and future research directions.In: Bianco, L., Dell’Olmo, P., Odoni, A.R. (Eds.), New Concepts and Methods in Air Traffic Management. Springer Berlin Heidelberg, Berlin, Germany, p.17–30. http://dx.doi.org/10.1007/978-3-662-04632-6
[5]
Barnes , M.J., Chen , J.Y.C., Jentsch , F., , 2013. An overview of humans and autonomy for military environments: safety, types of autonomy, agents, and user interfaces. Proc. 10th Int. Conf. on Engineering Psychology and Cognitive Ergonomics: Applications and Services, p.243–252. https://dx.doi.org/10.1007/978-3-642-39354-9_27
[6]
Boman , I.L., Bartfai , A., 2015. The first step in using a robot in brain injury rehabilitation: patients’ and health-care professionals’ perspective.Disab. Rehab. Assist. Technol., 10(5):365–370. http://dx.doi.org/10.3109/17483107.2014.913712
[7]
Bradley , A.P., 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms.Patt. Recogn., 30(7):1145–1159. http://dx.doi.org/10.1016/S0031-3203(96)00142-2
[8]
Browne , C.B., Powley , E., Whitehouse , D., , 2012. A survey of Monte Carlo tree search methods.IEEE Trans. Comput. Intell. AI Games, 4(1):1–43. http://dx.doi.org/10.1109/TCIAIG.2012.2186810
[9]
Campbell , M., Hoane , A.J.Jr., Hsu , F.H., 2002. Deep Blue.Artif. Intell., 134(1-2):57–83. http://dx.doi.org/10.1016/S0004-3702(01)00129-1
[10]
Chen , D., Yuan , Z., Hua , G., , 2016. Multi-timescale collaborative tracking.IEEE Trans. Patt. Anal. Mach. Intell., 39(1):141–155. http://dx.doi.org/10.1109/TPAMI.2016.2539956
[11]
Chen , Y., Argentinis , J.D.E., Weber , G., 2016. IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research.Clin. Therap., 38(4):688–701. http://dx.doi.org/10.1016/j.clinthera.2015.12.001
[12]
Cimbala , S.J., 2012. Artificial Intelligence and National Security. Lexington Books, Lanham, USA.
[13]
Denton , E.L., Chintala , S., Fergus , R., , 2015. Deep generative image models using a Laplacian pyramid of adversarial networks. Proc. 28th Int. Conf. on Neural Information Processing Systems, p.1486–1494.
[14]
de Rocquigny , E., Nicolas , D., Stefano , T., 2008. Uncertainty in Industrial Practice: a Guide to Quantitative Uncertainty Management. John Wiley & Sons, Hoboken, USA.
[15]
Dias , M.G., Harris , P., 1988. The effect of make-believe play on deductive reasoning.Br. J. Devel. Psychol., 6(3):207–221. http://dx.doi.org/10.1111/j.2044-835X.1988.tb01095.x
[16]
Dounias , G., 2003. Hybrid computational intelligence in medicine. Proc. Workshop on Intelligent and Adaptive Systems in Medicine.
[17]
Eakin , H., Luers , A.L., 2006. Assessing the vulnerability of social-environmental systems.Ann. Rev. Environ. Resourc., 31:1–477. http://dx.doi.org/10.1146/annurev. energy.30.050504.144352
[18]
Ferreira , F.J., Crispim , V.R., Silva , A.X., 2010. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques.Appl. Rad. Isot., 68(6):1012–1017. http://dx.doi.org/10.1016/j.apradiso.2010.01.019
[19]
Fire , A., Zhu , S.C., 2016. Learning perceptual causality from video.ACM Trans. Intell. Syst. Technol., 7(2):1–22. http://dx.doi.org/10.1145/2809782
[20]
Fischbein , H., 2002. Intuition in Science and Mathematics: an Educational Approach. Springer Science & Business Media, Berlin, Germany.
[21]
Fjellheim , R., Bratvold , R.R., Herbert , M.C., 2008. CODIO- collaborative decisionmaking in integrated operations. Intelligent Energy Conf. and Exhibition, p.1–7. http://dx.doi.org/10.2118/111876-MS
[22]
Fogel , D.B., 1995. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. Wiley-IEEE Press.
[23]
Freyd , J.J., 1983. Representing the dynamics of a static form.Memory Cogn., 11(4):342–346. http://dx.doi.org/10.3758/BF03202447
[24]
Funahashi , K.I., Nakamura , Y., 1993. Approximation of dynamic systems by continuous-time recurrent neural networks.Neur. Netw., 6(6):801–806. http://dx.doi.org/10.1016/S0893-6080(05)80125-X
[25]
Gil , Y., Greaves , M., Hendler , J., , 2014. Amplify scientific discovery with artificial intelligence.Science, 346(6206):171–172. http://dx.doi.org/10.1126/science.1259439
[26]
Gilbert , G.R., Beebe , M.K., 2010. United States Department of Defense Research in Robotic Unmanned Systems for Combat Casualty Care. Report No. RTO-MP-HFM-182, Fort Detrick, Frederick, USA.
[27]
Goodfellow , I.J., Shlens , J., Szegedy , C., 2014a. Explaining and harnessing adversarial examples. ePrint Archive, arXiv:1412.6572.
[28]
Goodfellow , I.J., Pougetabadie , J., Mirza , M., , 2014b. Generative adversarial nets. Advances in Neural Information Processing Systems, p.2672–2680.
[29]
Graves , A., Mohamed , A.R., Hinton , G., 2013. Speech recognition with deep recurrent neural networks. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.6645–6649. http://dx.doi.org/10.1109/ICASSP.2013.6638947
[30]
Graves , A., Wayne , G., Danihelka , I., 2014. Neural turing machines. ePrint Archive, arXiv:1410.5401.
[31]
Graves , A., Wayne , G., Reynolds , M., , 2016. Hybrid computing using a neural network with dynamic external memory.Nature, 538(7626):471–476. http://dx.doi.org/10.1038/nature20101
[32]
Griffiths , T.L., Chater , N., Kemp , C., , 2010. Probabilistic models of cognition: exploring representations and inductive biases.Trends Cogn. Sci., 14(8):357–364. http://dx.doi.org/10.1016/j.tics.2010.05.004
[33]
Guilford , J.P., 1967. The Nature of Human Intelligence. McGraw-Hill, New York, USA.
[34]
Hagan , M.T., Demuth , H.B., Beale , M.H., , 2002. Neural Network Design. PWS Publishing Co., Boston, USA.
[35]
Hilovska , K., Koncz , P., 2012. Application of artificial intelligence and data mining techniques to financial markets.ACTA VSFS, 6:62–76.
[36]
Hiskens , I.A., Davy , R.J., 2001. Exploring the power flow solution space boundary.IEEE Trans. Power Syst., 16(3):389–395. http://dx.doi.org/10.1109/59.932273
[37]
Hoffman , R., 1998. Integer Programming Models for Ground-Holding in Air Traffic Flow Management. PhD Thesis, University of Maryland, College Park, USA.
[38]
Holland , J.H., 1992. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press.
[39]
Honey , C.J., Thivierge , J.P., Sporns , O., 2010. Can structure predict function in the human brain?NeuroImage, 52(3):766–776. http://dx.doi.org/10.1016/j.neuroimage.2010.01.071
[40]
Hu , P., Zhou , S., Ding , W.Z., , 2010. The comprehensive measurement model of the member importance in social networks. Int. Conf. on Management and Service Science, p.1–4. http://dx.doi.org/10.1109/ICMSS.2010.5577405
[41]
Hu , P., Wen , C.L., Pan , D., 2013. The mutual relationship among external network, internal resource, and competitiveness of enterprises.Sci. Res. Manag., V(4):90–98 (in Chinese).
[42]
Hughes , D., Camp , C., O’Hara , J., , 2016. Health resource use following robot-assisted surgery versus open and conventional laparoscopic techniques in oncology: analysis of English secondary care data for radical prostatectomy and partial nephrectomy.BJU Int., 117(6):940–947.
[43]
Im , D.Y., Ryoo , Y.J., Kim , D.Y., , 2009. Unmanned driving of intelligent robotic vehicle. ISIS Proc. 10th Symp. on Advanced Intelligent Systems, p.213–216.
[44]
Ioffe , A.D., 1979. Necessary and sufficient conditions for a local minimum. 3: second order conditions and augmented duality.SIAM J. Contr. Opt., 17(2):266–288. http://dx.doi.org/10.1137/0317021
[45]
Janis , I.L., Mann , L., 1977. Decision Making: a Psychological Analysis of Conflict, Choice, and Commitment. Free Press, New York, USA.
[46]
Jennings , N.R., 2000. On agent-based software engineering artificial intelligence.Artif. Intell., 117(2):277–296.
[47]
Johnson , M., Bradshaw , J.M., Feltovich , P.J., , 2014. Coactive design: designing support for interdependence in joint activity. Electr. Eng. Math. Comput. Sci., 3(1):43–49. http://dx.doi.org/10.5898/JHRI.3.1.Johnson
[48]
Johnson , S., Slaughter , V., Carey , S., 1998. Whose gaze will infants follow? The elicitation of gaze-following in 12-month-olds.Devel. Sci., 1(2):233–238. http://dx.doi.org/10.1111/1467-7687.00036
[49]
Jordan , M.I., 2016. On computational thinking, inferential thinking and data science. Proc. 28th ACM Symp. on Parallelism in Algorithms and Architectures, p.47. http://dx.doi.org/10.1145/2935764.2935826
[50]
Kourtzi , Z., Kanwisher , N., 2000. Activation in human MT/MST by static images with implied motion.J. Cogn. Neurosci., 12(1):48–55. http://dx.doi.org/10.1162/08989290051137594
[51]
Lake , B.M., Salakhutdinov , R., Tenenbaum , J.B., 2015. Human-level concept learning through probabilistic program induction.Science, 350(6266):1332–1338. http://dx.doi.org/10.1126/science.aab3050
[52]
Lake , B.M., Ullman , T.D., Tenenbaum , J.B., , 2016. Building machines that learn and think like people.Behav. Brain Sci., 22:1–101.
[53]
Ledford , H., 2015. How to solve the world’s biggest problems.Nature, 525:308–311. http://dx.doi.org/10.1038/525308a
[54]
Lewis , D.D., 1998. Naive (Bayes) at forty: the independence assumption in information retrieval. European Conf. on Machine Learning, p.4–15. http://dx.doi.org/10.1007/BFb0026666
[55]
Lillicrap , T.P., Hunt , J.J., Pritzel , A., , 2016. Continuous control with deep reinforcement learning. ePrint Archive, arXiv:1509.02971.
[56]
Lippmann , R.P., 1987. An introduction to computing with neural nets.IEEE ASSP Mag., 4(2):4–22. http://dx.doi.org/10.1109/MASSP.1987.1165576
[57]
Liyanage , J.P., 2012. Hybrid Intelligence Through Business Socialization and Networking: Managing Complexities in the Digital Era. IGI Global, Hershey, USA.
[58]
Marchiori , D., Warglien , M., 2008. Predicting human interactive learning by regret-driven neural networks.Science, 319(5866):1111–1113. http://dx.doi.org/10.1126/science.1151185
[59]
Marr , D., 1977. Artificial intelligence—a personal view.Artif. Intell., 9(1):37–48. http://dx.doi.org/10.1016/0004-3702(77)90013-3
[60]
Martin , J., 2007. The Meaning of the 21st Century: a Vital Blueprint for Ensuring Our Future. Random House.
[61]
McCarthy , J., Hayes , P.J., 1987. Some Philosophical Problems from the Standpoint of Artificial Intelligence. Morgan Kaufmann Publishers Inc., Burlington, USA.
[62]
Michalski , R.S., Carbonell , J.G., Mitchell , T.M., 1984. Machine Learning: an Artificial Intelligence Approach. Springer Science & Business Media, Berlin, Germany.
[63]
Mikolov , T., Karafiát , M., Burget , L., , 2010. Recurrent neural network based language model. Conf. of the Int. Speech Communication Association, p.1045–1048.
[64]
Minsky , M., 1961. Steps toward artificial intelligence.Proc. IRE, 49(1):8–30. http://dx.doi.org/10.1109/JRPROC.1961.287775
[65]
Mirza , M., Osindero , S., 2014. Conditional generative adversarial nets. ePrint Archive, arXiv:1411.1784.
[66]
Mizumoto , M., 1982. Comparison of fuzzy reasoning methods.Fuzzy Sets Syst., 8(3):253–283. http://dx.doi.org/10.1016/S0165-0114(82)80004-3
[67]
Mnih , V., Kavukcuoglu , K., Silver , D., , 2013. Playing Atari with deep reinforcement learning. ePrint Archive, arXiv:1312.5602.
[68]
Mnih , V., Kavukcuoglu , K., Silver , D., , 2015. Humanlevel control through deep reinforcement learning.Nature, 518(7540):529–533. http://dx.doi.org/10.1038/nature14236
[69]
Moran , J., Desimone , R., 1985. Selective Attention Gates Visual Processing in the Extrastriate Cortex. MIT Press, Cambridge, USA.
[70]
Muir , B.M., 1994. Trust in automation: part I. Theoretical issues in the study of trust and human intervention in automated systems.Ergonomics, 37(11):1905–1922. http://dx.doi.org/10.1080/00140139408964957
[71]
Nash , J.F., 1950. Equilibrium points in n-person games.PNAS, 36(1):48–49. http://dx.doi.org/10.1073/pnas.36.1.48
[72]
Navigli , R., Ponzetto , S.P., 2012. Babelnet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network.Artif. Intell., 193(6):217–250. http://dx.doi.org/10.1016/j.artint.2012.07.001
[73]
Newell , A., Simon , H.A., 1972. Human Problem Solving. Prentice-Hall, Englewood Cliffs, USA.
[74]
Nilsson , N.J., 1965. Learning Machines: Foundations of Trainable Pattern-Classifying Systems. McGraw-Hill, New York, USA.
[75]
Nissen , M.J., Bullemer , P., 1987. Attentional requirements of learning: evidence from performance measures. Cogn. Psychol., 19(1):1–32. http://dx.doi.org/10.1016/0010-0285(87)90002-8
[76]
Noh , H., Hong , S., Han , B., 2015. Learning deconvolution network for semantic segmentation. IEEE Int. Conf. on Computer Vision, p.1520–1528.
[77]
Norman , K.A., O’Reilly , R.C., 2003. Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach.Psychol. Rev., 110(4):611–646. http://dx.doi.org/10.1037/0033-295X.110.4.611
[78]
Ogura , T., Yamada , J., Yamada , S.I., , 1989. A 20 kbit associative memory lSI for artificial intelligence machines. IEEE J. Sol.-State Circ., 24(4):1014–1020. http://dx.doi.org/10.1109/4.34086
[79]
O’Keefe , J., Nadel , L., 1978. The Hippocampus as a Cognitive Map. Clarendon Press, Oxford.
[80]
O’Leary , D.E., 2013. Artificial intelligence and big data.IEEE Intell. Syst., 28(2):96–99. http://dx.doi.org/10.1109/MIS.2013.39
[81]
Pan , Y.H., 2016. Heading toward artificial intelligence 2.0.Engineering, 2(4):409–413. http://dx.doi.org/10.1016/J.ENG.2016.04.018
[82]
Park , C.C., Kim , G., 2015. Expressing an image stream with a sequence of natural sentences. Advances in Neural Information Processing Systems, p.73–81.
[83]
Poole , D., Mackworth , A., Goebel , R., 1997. Computational Intelligence: a Logical Approach. Oxford University Press, Oxford, UK.
[84]
Premack , D., Premack , A.J., 1997. Infants attribute value to the goal-directed actions of self-propelled objects.J. Cogn. Neurosci., 9(6):848–856. http://dx.doi.org/10.1162/jocn.1997.9.6.848
[85]
Pylyshyn , Z.W., 1984. Computation and Cognition: Toward a Foundation for Cognitive Science. The MIT Press, Cambridge, Massachusetts, USA.
[86]
Rachlin , H., 2012. Making IBM’s computer, Watson, human.Behav. Anal., 35(1):1–16.
[87]
Radford , A., Metz , L., Chintala , S., 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. ePrint Archive, arXiv:1511.06434.
[88]
Rashevsky , N., 1964. Man-machine interaction in automobile driving. Prog. Biocybern., 42:188–200.
[89]
Rasmussen , C.E., 2000. The infinite Gaussian mixture model. Advances in Neural Information Processing Systems, p.554–560.
[90]
Rehder , B., Hastie , R., 2001. Causal knowledge and categories: the effects of causal beliefs on categorization, induction, and similarity.J. Exp. Psychol., 130(3):323–360. http://dx.doi.org/10.1037/0096-3445.130.3.323
[91]
Russell , S.J., Norvig , P., 1995. Artificial Intelligence: a Modern Approach. Prentice Hall, Englewood Cliffs, USA.
[92]
Salimans , T., Goodfellow , I., Zaremba , W., , 2016. Improved techniques for training gans. Advances in Neural Information Processing Systems, p.2226–2234.
[93]
Salvi , C., Bricolo , E., Kounios , J., , 2016. Insight solutions are correct more often than analytic solutions.Think. Reason., 22(4):443–460. http://dx.doi.org/10.1080/13546783.2016.1141798
[94]
Samuel , A.L., 1988. Some studies in machine learning using the game of checkers.IBM J. Res. Dev., 44(1-2):206–226. http://dx.doi.org/10.1147/rd.441.0206
[95]
Saripalli , S., Montgomery , J.F., Sukhatme , G., 2003. Visually guided landing of an unmanned aerial vehicle.IEEE Trans. Robot. Autom., 19(3):371–380. http://dx.doi.org/10.1109/TRA.2003.810239
[96]
Saxe , R., Carey , S., 2006. The perception of causality in infancy.ACTA Psychol., 123(1-2):144–165. http://dx.doi.org/10.1016/j.actpsy.2006.05.005
[97]
Schlottmann , A., Ray , E.D., Mitchell , A., , 2006. Perceived physical and social causality in animated motions: spontaneous reports and ratings.ACTA Psychol., 123(1-2):112–143. http://dx.doi.org/10.1016/j.actpsy.2006.05.006
[98]
Schwartz , T., Zinnikus , I., Krieger , H.U., , 2016. Hybrid teams: flexible collaboration between humans, robots and virtual agents. German Conf. on Multiagent System Technologies, p.131–146.
[99]
Selfridge , O.G., 1988. Pandemonium: a paradigm for learning. National Physical Laboratory Conf., p.511–531.
[100]
Shader , R.I., 2016. Some reflections on IBM Watson and on women’s health.Clin. Therap., 38(1):1–2. http://dx.doi.org/10.1016/j.clinthera.2015.12.008
[101]
Sharp , C.S., Shakernia , O., Sastry , S.S., 2001. A vision system for landing an unmanned aerial vehicle. IEEE Int. Conf. on Robotics & Automation, p.1720–1727. http://dx.doi.org/10.1109/ROBOT.2001.932859
[102]
Shrivastava , P., 1995. Ecocentric management for a risk society.Acad. Manag. Rev., 20(1):118–137. http://dx.doi.org/10.5465/AMR.1995.9503271996
[103]
Shuaibu , B.M., Norwawi , N.M., Selamat , M.H., , 2015. Systematic review of Web application security development model.Artif. Intell. Rev., 43(2):259–276. http://dx.doi.org/10.1007/s10462-012-9375-6
[104]
Silver , D., Huang , A., Maddison , C.J., , 2016. Mastering the game of Go with deep neural networks and tree search.Nature, 529(7587):484–489. http://dx.doi.org/10.1038/nature16961
[105]
Simon , H.A., 1969. The Sciences of the Artificial. MIT Press, Cambridge, USA.
[106]
Son , D., Lee , J., Qiao , S., , 2014. Multifunctional wearable devices for diagnosis and therapy of movement disorders.Nat. Nanotechnol., 9(5):397–404. http://dx.doi.org/10.1038/nnano.2014.38
[107]
Sternberg , R.J., 1984. Beyond IQ: a triarchic theory of human intelligence. Br. J. Educat. Stud., 7(2):269–287.
[108]
Sternberg , R.J., Davidson , J.E., 1983. Insight in the gifted.Educat. Psychol., 18(1):51–57. http://dx.doi.org/10.1080/00461528309529261
[109]
Stone , P., Brooks , R., Brynjolfsson , E., , 2016. Artificial Intelligence and Life in 2030. One Hundred Year Study on Artificial Intelligence: Report of the 2015-2016 Study Panel, Stanford University, Stanford, USA.
[110]
Sun , Y., Wang , X.G., Tang , X.O., 2014. Deep learning face representation from predicting 10,000 classes. IEEE Conf. on Computer Vision and Pattern Recognition, p.1891–1898. http://dx.doi.org/10.1109/CVPR.2014.244
[111]
Szegedy , C., Zaremba , W., Sutskever , I., , 2013. Intriguing properties of neural networks. ePrint Archive, arXiv:1312.6199.
[112]
Szolovits , P., Patil , R.S., Schwartz , W.B., 1988. Artificial intelligence in medical diagnosis.Ann. Int. Med., 108(1):80–87. http://dx.doi.org/10.1059/0003-4819-108-1-80
[113]
Tenenbaum , J.B., Kemp , C., Griffiths , T.L., , 2011. How to grow a mind: statistics, structure, and abstraction. Science, 331(6022):1279–1285. http://dx.doi.org/10.1126/science.1192788
[114]
Thielscher , M., 1997. Ramification and causality.Artif. Intell., 89(1-2):317–364. http://dx.doi.org/10.1016/S0004-3702(96)00033-1
[115]
Thielscher , M., 2001. The qualification problem: a solution to the problem of anomalous models.Artif. Intell., 131(1-2):1–37. http://dx.doi.org/10.1016/S0004-3702(01)00131-X
[116]
Thrun , S., Burgard , W., Fox , D., 1998. A probabilistic approach to concurrent mapping and localization for mobile robots.Mach. Learn., 5(3):253–271. http://dx.doi.org/10.1023/A:1008806205438
[117]
Tolman , E.C., 1948. Cognitive maps in rats and men.Psychol. Rev., 55(4):189–208. http://dx.doi.org/10.1037/h0061626
[118]
Tremoulet , P.D., Feldman , J., 2000. Perception of animacy from the motion of a single object.Perception, 29(8):943–951. http://dx.doi.org/10.1068/p3101
[119]
Tversky , A., Kahneman , D., 1983. Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment.Psychol. Rev., 90(4):293–315. http://dx.doi.org/10.1037/0033-295X.90.4.293
[120]
van den Oord , A., Kalchbrenner , N., Kavukcuoglu , K., 2016. Pixel recurrent neural networks. ePrint Archive, arXiv:1601.06759.
[121]
Varaiya , P., 1993. Smart car on smart roads: problems of control.IEEE Trans. Autom. Contr., 38(2):195–207. http://dx.doi.org/10.1109/9.250509
[122]
Waldrop , M.M., 2015. Autonomous vehicles: no drivers required.Nature, 518(7537):20–23. http://dx.doi.org/10.1038/518020a
[123]
Walters , M.L., Koay , K.L., Syrdal , D.S., , 2013. Companion robots for elderly people: using theatre to investigate potential users’ views. IEEE Ro-Man, p.691–696. http://dx.doi.org/10.1109/ROMAN.2013.6628393
[124]
Wang , F.Y., 2004. Artificial societies, computational experiments, and parallel systems: a discussion on computational theory of complex social-economic systems.Compl. Syst. Compl. Sci., 1(4):25–35.
[125]
Wang , F.Y., Wang , X., Li , L.X., , 2016. Steps toward parallel intelligence.IEEE/CAA J. Autom. Sin., 3(4):345–348. http://dx.doi.org/10.1109/JAS.2016.7510067
[126]
Wang , J.J., Ma , Y.Q., Chen , S.T., , 2017. Fragmentation knowledge processing and networked artificial.Seieat. Sin. Inform., 47(1):1–22.
[127]
Wang , L.M., Xiong , Y.J., Wang , Z., , 2016. Temporal segment networks: towards good practices for deep action recognition.LNCS, 9912:20–36. http://dx.doi.org/10.1007/978-3-319-46484-8_2
[128]
Wei , P., Zheng , N.N., Zhao , Y.B., , 2013. Concurrent action detection with structural prediction. IEEE Int. Conf. on Computer Vision, p.3136–3143. http://dx.doi.org/10.1109/ICCV.2013.389
[129]
Wei , P., Zhao , Y., Zheng , N., , 2016. Modeling 4D human-object interactions for joint event segmentation, recognition, and object localization.IEEE Trans. Softw. Eng. http://dx.doi.org/10.1109/TPAMI.2016.2574712
[130]
Williams , R.J., Zipser , D., 1989. A learning algorithm for continually running fully recurrent neural networks.Neur. Comput., 1(2):270–280. http://dx.doi.org/10.1162/neco.1989.1.2.270
[131]
Williams , W.M., Sternberg , R.J., 1988. Group intelligence: why some groups are better than others.Intelligence, 12(4):351–377. http://dx.doi.org/10.1016/0160-2896(88)90002-5
[132]
Xiao , C.Y., Dymetman , M., Gardent , C., 2016. Sequencebased structured prediction for semantic parsing. Meeting of the Association for Computational Linguistics, p.1341–1350.
[133]
Yau , S.S., Gupta , S.K.S., Karim , F., , 2003. Smart classroom: enhancing collaborative learning using pervasive computing technology. ASEE Annual Conf. and Exposition, p.13633–13642.
[134]
Yegnanarayana , B., 1994. Artificial neural networks for pattern recognition.Sadhana, 19(2):189–238. http://dx.doi.org/10.1007/BF02811896
[135]
Youseff , L., Butrico , M., da Silva , D., 2008. Toward a unified ontology of cloud computing. Grid Computing Environments Workshop, p.1–10. http://dx.doi.org/10.1109/GCE.2008.4738443
[136]
Zadeh , L.A., 1996. Fuzzy logic and approximate reasoning.In: Advances in Fuzzy Systems- Applications and Theory: Volume 6. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems. World Scientific Publishing, Singapore, p.238–259. http://dx.doi.org/10.1142/9789814261302_0016
[137]
Zhao , Y.Y., Qin , B., Liu , T., 2010. Sentiment analysis.J. Softw., 21(8):1834–1848.
[138]
Zheng , N.N., Tang , S.M., Cheng , H., , 2004. Toward intelligent driver-assistance and safety warning systems.IEEE Intell. Syst., 19(2):8–11. http://dx.doi.org/10.1109/MIS.2004.1274904

RIGHTS & PERMISSIONS

2017 Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF(3943 KB)

Accesses

Citations

Detail

Sections
Recommended

/