Challenges and opportunities: from big data to knowledge inAI 2.0
Yue-ting ZHUANG, Fei WU, Chun CHEN, Yun-he PAN
Challenges and opportunities: from big data to knowledge inAI 2.0
In this paper, we review recent emerging theoretical and technological advances of artificial intelligence (AI) in the big data settings. We conclude that integrating data-driven machine learning with human knowledge (common priors or implicit intuitions) can effectively lead to explainable, robust, and general AI, as follows: from shallow computation to deep neural reasoning; from merely data-driven model to data-driven with structured logic rules models; from task-oriented (domain-specific) intelligence (adherence to explicit instructions) to artificial general intelligence in a general context (the capability to learn from experience). Motivated by such endeavors, the next generation of AI, namely AI 2.0, is positioned to reinvent computing itself, to transform big data into structured knowledge, and to enable better decision-making for our society.
Deep reasoning / Knowledge base population / Artificial general intelligence / Big data / Cross media
[1] |
Abadi, M., Agarwal, A., Barham, P.,
|
[2] |
Auer, S., Bizer, C., Kobilarov, B.,
|
[3] |
Bahdanau, D., Cho, K., Bengio, Y., 2014. Neural machine translation by jointly learning to align and translate. ePrint Archive, arXiv:1409.0473.
|
[4] |
Baudisch, P., Good, N., Bellotti, V.,
|
[5] |
Bergstra, J., Breuleux, O., Bastien, F.,
|
[6] |
Bollacker, K., Evans, C., Paritosh, P.,
|
[7] |
Brill, E., 1992. A simple rule-based part of speech tagger. Proc. Workshop on Speech and Natural Language, p.112–116. http://dx.doi.org/10.3115/1075527.1075553
|
[8] |
Carlson, A., Betteridge, J., Kisiel, B.,
|
[9] |
Cho, K., Courville, A., Bengio, Y., 2015. Describing multimedia content using attention-based encoder-decoder networks.IEEE Trans. Multim., 17(11):1875–1886. http://dx.doi.org/10.1109/TMM.2015.2477044
|
[10] |
Collobert, R., Bengio, S., Mariéthoz, J., 2002. Torch: a Modular Machine Learning Software Library. IDIAP Research Report No. IDIAP-RR 02-46, Dalle Molle Institute for Perceptual Artificial Intelligence, Martigny, Switzerland.
|
[11] |
Gordo, A., Almazan, J., Revaud, J.,
|
[12] |
Harris, Z.S., 1954. Distributional structure. In: Hiz, H. (Ed.), Formal Linguistics Series. Springer Netherlands, Houten, Netherlands. http://dx.doi.org/10.1007/978-94-017-6059-1_36
|
[13] |
He, K.M., Zhang, X.Y., Ren, S.Q.,
|
[14] |
Hu, Z.T., Ma, X.Z., Liu, Z.Z.,
|
[15] |
Ip, C.Y., Varshney, A., 2011. Saliency-assisted navigation of very large landscape images.IEEE Trans. Visual. Comput. Graph., 17(12):1737–1746. http://dx.doi.org/10.1109/TVCG.2011.231
|
[16] |
Jia, Y.Q., Shelhamer, E., Donahue, J.,
|
[17] |
Kalchbrenner, N., Grefenstette, E., Blunsom, P., 2014. A convolutional neural network for modelling sentences. ePrint Archive, arXiv:1404.2188.
|
[18] |
Karpathy, A., Joulin, A., Li, F.F.F., 2014. Deep fragment embeddings for bidirectional image sentence mapping. Proc. Advances in Neural Information Processing Systems, p.1889–1897.
|
[19] |
Kim, Y.M., Varshney, A., 2006. Saliency-guided enhancement for volume visualization. IEEE Trans. Visual. Comput. Graph., 12(5):925–932. http://dx.doi.org/10.1109/TVCG.2006.174
|
[20] |
Kitcher, P., 1988. Marr’s computational theory of vision.Philos. Sci., 55(1):1–24.
|
[21] |
Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. 26th Annual Conf. on Neural Information Processing Systems, p.1097–1105.
|
[22] |
Lee, C.Y., Xie, S., Gallagher, P.,
|
[23] |
Li, J.W., Monroe, W., Ritter, A.,
|
[24] |
Liu, Y., Sun, C.J., Lin, L.,
|
[25] |
Low, Y.C., Gonzalez, J.E., Kyrola, A.,
|
[26] |
Mackinlay, J., Hanrahan, P., Stolte, C., 2007. Show me: automatic presentation for visual analysis.IEEE Trans. Visual. Comput. Graph., 13(6):1137–1144. http://dx.doi.org/10.1109/TVCG.2007.70594
|
[27] |
Marrinan, T., Aurisano, J., Nishimoto, A.,
|
[28] |
McCarthy, J., Minsky, M.L., Rochester, N.,
|
[29] |
Mikolov, T., Chen, K., Corrado, G.,
|
[30] |
Neal, R.M., 2012. Bayesian Learning for Neural Networks. Springer Science & Business Media, Berlin, Germany.
|
[31] |
Pan, Y.H., 2016. Heading toward artificial intelligence 2.0.Engineering, 2(4):409–413. http://dx.doi.org/10.1016/J.ENG.2016.04.018
|
[32] |
Rezende, D.J. Mohamed, S., Danihelka, I.,
|
[33] |
Russell, S.J., Norvig, P., Canny, J.,
|
[34] |
Sacha, D., Stoffel, A., Stoffel, F.,
|
[35] |
Sarjant, S., Legg, C., Robinson, M.,
|
[36] |
Schroeder, W.J., Lorensen, B., Martin, K., 2004. The Visualization Toolkit: an Object-Oriented Approach to 3D Graphics. Kitware, New York, USA.
|
[37] |
Shijia, E., Jia, S.B., Yang, X.,
|
[38] |
Shneiderman, B., 1996. The eyes have it: a task by data type taxonomy for information visualizations. Proc. IEEE Symp. on Visual Languages, p.336–343. http://dx.doi.org/10.1109/VL.1996.545307
|
[39] |
Shojaee, S.M., Baghshah, M.S., 2016. Semi-supervised zeroshot learning by a clustering-based approach. ePrint Archive, arXiv:1605.09016.
|
[40] |
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. ePrint Archive, arXiv:1409.1556.
|
[41] |
Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. Conf. on Neural Information Processing Systems, p.3104–3112.
|
[42] |
Szegedy, C., Liu, W., Jia, Y.Q.,
|
[43] |
Vrandečić, D., Krötzsch, M., 2014. Wikidata: a free collaborative knowledgebase. Commun. ACM, 57(10):78–85. http://dx.doi.org/10.1145/2629489
|
[44] |
Weston, J., Chopra, S., Bordes, A., 2014. Memory networks. ePrint Archive, arXiv:1410–3916.
|
[45] |
Wu, F., Yu, Z., Yang, Y.,
|
[46] |
Wu, F., Jiang, X.Y., Li, X.,
|
[47] |
Zhuang, Y.T., Song, J., Wu, F.,
|
/
〈 | 〉 |