Avision-centeredmulti-sensor fusing approach to self-localization and obstacle perception for robotic cars
Jian-ru XUE, Di WANG, Shao-yi DU, Di-xiao CUI, Yong HUANG, Nan-ning ZHENG
Avision-centeredmulti-sensor fusing approach to self-localization and obstacle perception for robotic cars
Most state-of-the-art robotic cars’ perception systems are quite different from the way a human driver understands traffic environments. First, humans assimilate information from the traffic scene mainly through visual perception, while the machine perception of traffic environments needs to fuse information from several different kinds of sensors to meet safety-critical requirements. Second, a robotic car requires nearly 100% correct perception results for its autonomous driving, while an experienced human driver works well with dynamic traffic environments, in which machine perception could easily produce noisy perception results. In this paper, we propose a vision-centered multi-sensor fusing framework for a traffic environment perception approach to autonomous driving, which fuses camera, LIDAR, and GIS information consistently via both geometrical and semantic constraints for efficient selflocalization and obstacle perception. We also discuss robust machine vision algorithms that have been successfully integrated with the framework and address multiple levels of machine vision techniques, from collecting training data, efficiently processing sensor data, and extracting low-level features, to higher-level object and environment mapping. The proposed framework has been tested extensively in actual urban scenes with our self-developed robotic cars for eight years. The empirical results validate its robustness and efficiency.
Visual perception / Self-localization / Mapping / Motion planning / Robotic car
[1] |
Aeberhard, M., Rauch, S., Bahram, M.,
|
[2] |
Blanco, J.L., Fernádez-Madrigal, J.A., González, J., 2007. A new approach for large-scale localization and mapping: hybrid metric-topological SLAM. Proc. IEEE Int. Conf. on Robotics and Automation, p.2061–2067. http://dx.doi.org/10.1109/ROBOT.2007.363625
|
[3] |
Blanco, J.L., Fernádez-Madrigal, J.A., González, J., 2008. Toward a unified Bayesian approach to hybrid metrictopological SLAM. IEEE Trans. Robot., 24(2):259–270. http://dx.doi.org/10.1109/TRO.2008.918049
|
[4] |
Brubaker, M.A., Geiger, A., Urtasun, R., 2016. Map-based probabilistic visual self-localization. IEEE Trans. Patt. Anal. Mach. Intell., 38(4):652–665. http://dx.doi.org/10.1109/TPAMI.2015.2453975
|
[5] |
Buehler, M., Iagnemma, K., Singh, S., 2009. The DARPA Urban Challenge: Autonomous Vehicles in City Traffic. Springer.http://dx.doi.org/10.1007/978-3-642-03991-1
|
[6] |
Cho, H., Seo, Y.W., Kumar, B.V.K.V.,
|
[7] |
Cui, D., Xue, J., Du, S.,
|
[8] |
Cui, D.X., Xue, J.R., Zheng, N.N., 2016. Real-time global localization of robotic cars in lane level via lane marking detection and shape registration. IEEE Trans. Intell. Transp. Syst., 17(4):1039–1050. http://dx.doi.org/10.1109/TITS.2015.2492019
|
[9] |
Darms, M., Rybski, P., Urmson, C., 2008. Classification and tracking of dynamic objects with multiple sensors for autonomous driving in urban environments. IEEE Intelligent Vehicles Symp., p.1197–1202. http://dx.doi.org/10.1109/IVS.2008.4621259
|
[10] |
Darms, M., Rybski, P., Baker, C.,
|
[11] |
Davison, A.J., Reid, I.D., Molton, N.D.,
|
[12] |
Dissanayake, M.W.M.G., Newman, P., Clark, S.,
|
[13] |
Dollár, P., Appel, R., Belongie, S.,
|
[14] |
Douillard, B., Fox, D., Ramos, F., 2009. Laser and vision based outdoor object mapping. Robotics: Science and Systems IV, p.9–16.
|
[15] |
Du, S.Y., Zheng, N.N., Xiong, L.,
|
[16] |
Durrant-Whyte, H., Bailey, T., 2006. Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. , 13(2):99–110. http://dx.doi.org/10.1109/MRA.2006.1638022
|
[17] |
Ess, A., Schindler, K., Leibe, B.,
|
[18] |
Fuentes-Pacheco, J., Ruiz-Ascencio, J., Rendón-Mancha, J.M., 2015. Visual simultaneous localization and mapping: a survey. Artif. Intell. Rev., 43(1):55–81. http://dx.doi.org/10.1007/s10462-012-9365-8
|
[19] |
Grisetti, G., Kummerle, R., Stachniss, C.,
|
[20] |
Hartley, R.I., Zisserman, A., 2004. Multiple View Geometry in Computer Vision. Cambridge University Press.
|
[21] |
Held, D., Levinson, J., Thrun, S.,
|
[22] |
Hillel, A.B., Lerner, R., Levi, D.,
|
[23] |
Hoiem, D., Hays, J., Xiao, J.X.,
|
[24] |
Konolige, K., Marder-Eppstein, E., Marthi, B., 2011. Navigation in hybrid metric-topological maps. IEEE Int. Conf. on Robotics and Automation, p.3041–3047. http://dx.doi.org/10.1109/ICRA.2011.5980074
|
[25] |
Li, Q., Zheng, N.N., Cheng, H., 2004. Springrobot: a prototype autonomous vehicle and its algorithms for lane detection. IEEE Trans. Intell. Transp. Syst., 5(4):300–308. http://dx.doi.org/10.1109/TITS.2004.838220
|
[26] |
Mertz, C., Navarro-Serment, L.E., MacLachlan, R.A.,
|
[27] |
Montemerlo, M., Thrun, S., Koller, D.,
|
[28] |
Pan, Y.H., 2016. Heading toward artificial intelligence 2.0. Engineering, 2(4):409–413. http://dx.doi.org/10.1016/J.ENG.2016.04.018
|
[29] |
Schueler, K., Weiherer, T., Bouzouraa, E.,
|
[30] |
Thrun, S., Leonard, J.J., 2008. Simultaneous localization and mapping. Int. Conf. on Artificial Intelligence, p.871–889. http://dx.doi.org/10.1007/978-3-540-30301-5_38
|
[31] |
Ulrich, L., 2016. 2016’s Top Ten Tech Cars. http://spectrum.ieee.org/transportation/advanced-cars/2016s-top-ten-tech-cars
|
[32] |
Xue, J., Zheng, N.N., Geng, J.,
|
[33] |
Zhang, Z., 2000. A flexible new technique for camera calibration. IEEE Trans. Patt. Anal. Mach. Intell., 22(11):1330–1334. http://dx.doi.org/10.1109/34.888718
|
[34] |
Zheng, N.N., Liu, Z.Y., Ren, P.J.,
|
/
〈 | 〉 |