Crowd intelligence in AI 2.0 era
Wei LI, Wen-jun WU, Huai-min WANG, Xue-qi CHENG, Hua-jun CHEN, Zhi-hua ZHOU, Rong DING
Crowd intelligence in AI 2.0 era
The Internet based cyber-physical world has profoundly changed the information environment for the development of artificial intelligence (AI), bringing a new wave of AI research and promoting it into the new era of AI 2.0. As one of the most prominent characteristics of research in AI 2.0 era, crowd intelligence has attracted much attention from both industry and research communities. Specifically, crowd intelligence provides a novel problem-solving paradigm through gathering the intelligence of crowds to address challenges. In particular, due to the rapid development of the sharing economy, crowd intelligence not only becomes a new approach to solving scientific challenges, but has also been integrated into all kinds of application scenarios in daily life, e.g., online-tooffline (O2O) application, real-time traffic monitoring, and logistics management. In this paper, we survey existing studies of crowd intelligence. First, we describe the concept of crowd intelligence, and explain its relationship to the existing related concepts, e.g., crowdsourcing and human computation. Then, we introduce four categories of representative crowd intelligence platforms. We summarize three core research problems and the state-of-the-art techniques of crowd intelligence. Finally, we discuss promising future research directions of crowd intelligence.
Crowd intelligence / Artificial intelligence 2.0 / Crowdsourcing / Human computation
[1] |
Abraham , I., Alonso , O., Kandylas , V.,
|
[2] |
Ballesteros , J., Carbunar , B., Rahman , M.,
|
[3] |
Basili , V.R., Briand , L.C., Melo , W.L., 1996. A validation of object-oriented design metrics as quality indicators.IEEE Trans. Softw. Eng., 22(10):751–761. http://dx.doi.org/10.1109/32.544352
|
[4] |
Bhattacharya , P., Neamtiu , I., 2010. Fine-grained incremental learning and multi-feature tossing graphs to improve bug triaging. IEEE Int. Conf. on Software Maintenance, p.1–10. http://dx.doi.org/10.1109/ICSM.2010.5609736
|
[5] |
Bird , C., Gourley , A., Devanbu , P.,
|
[6] |
Bird , C., Pattison , D., de Souza , R.,
|
[7] |
Bird , C., Nagappan , N., Murphy , B.,
|
[8] |
Bollen , J., Mao , H.N., Zeng , X.J., 2011. Twitter mood predicts the stock market. J. Comput. Sci., 2(1):1–8. http://dx.doi.org/10.1016/j.jocs.2010.12.007
|
[9] |
Bonabeau , E., 2009. Decisions 2.0: the power of collective intelligence.MIT Sloan Manag. Rev., 50(2):45–52.
|
[10] |
Borne , K.D., Zooniverse Team, 2011. The Zooniverse: a framework for knowledge discovery from citizen science data. American Geophysical Union Fall Meeting.
|
[11] |
Burke , J.A., Estrin , D., Hansen , M.,
|
[12] |
Cao , C.C., She , J.Y., Tong , Y.X.,
|
[13] |
Cao , C.C., Tong , Y.X., Chen , L.,
|
[14] |
Castaneda , O.F., 2010. Hierarchy in Meritocracy: Community Building and Code Production in the Apache Software Foundation. MS Thesis, Delft University of Technology, Delft, Netherlands.
|
[15] |
Chen , X., Lin , Q.H., Zhou , D.Y., 2013. Optimistic knowledge gradient policy for optimal budget allocation in crowdsourcing. Proc. 30th Int. Conf. on Machine Learning, p.64–72.
|
[16] |
Chen , X., Lin , Q.H., Zhou , D.Y., 2015. Statistical decision making for optimal budget allocation in crowd labeling.J. Mach. Learn. Res., 16:1–46.
|
[17] |
Dantec , C.A.L., Asad , M., Misra , A.,
|
[18] |
Dawid , A.P., Skene , A.M., 1979. Maximum likelihood estimation of observer error-rates using the EM algorithm.Appl. Statist., 28(1):20–28. http://dx.doi.org/10.2307/2346806
|
[19] |
de Alwis , B., Sillito , J., 2009. Why are software projects moving from centralized to decentralized version control systems? Proc. ICSE Workshop on Cooperative and Human Aspects on Software Engineering, p.36–39. http://dx.doi.org/10.1109/CHASE.2009.5071408
|
[20] |
Dekel , O., Shamir , O., 2009. Vox Populi: collecting highquality labels from a crowd. Proc. 22nd Conf. on Learning Theory.
|
[21] |
Dempster , A.P., Laird , N.M., Rubin , D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm.J. R. Stat. Soc. Ser. B, 39(1):1–38.
|
[22] |
Difallah , D.E., Demartini , G., Cudré-Mauroux , G.P., 2013. Pick-a-crowd: tell me what you like, and I’ll tell you what to do. Proc. 22nd Int. Conf. on World Wide Web, p.367–374. http://dx.doi.org/10.1145/2488388.2488421
|
[23] |
Difallah , D.E., Demartini , G., Cudré-Mauroux , G.P., 2016. Scheduling human intelligence tasks in multi-tenant crowd-powered systems. Proc. 25th Int. Conf. on World Wide Web, p.855–865. http://dx.doi.org/10.1145/2872427.2883030
|
[24] |
Dong , X.L., Saha , B., Srivastava , D., 2012. Less is more: selecting sources wisely for integration. Proc. VLDB Endow., 6(2):37–48. http://dx.doi.org/10.14778/2535568.2448938
|
[25] |
Erenkrantz , J.R., Taylor , R.N, 2003. Supporting Distributed and Decentralized Projects: Drawing Lessons From the Open Source Community. ISR Technical Report No. UCI-ISR-03-4, Institute for Software Research, University of California, Irvine, USA.
|
[26] |
Farkas , K., Nagy , A.Z., Tomás , T.,
|
[27] |
Feng , Z.N., Zhu , Y.M., Zhang , Q.,
|
[28] |
Fowler , G., Schectman , J., 2013. Citizen surveillance helps officials put pieces together.The Wall Street Journal, April 17. http://www.wsj.com/articles/SB10001424127 887324763404578429220091342796
|
[29] |
Gao , C., Zhou , D.Y., 2013. Minimax optimal convergence rates for estimating ground truth from crowdsourced labels. ePrint Archive, arXiv:1310.5764.
|
[30] |
Gao , D.W., Tong , Y.X., She , J.Y.,
|
[31] |
Gao , L., Hou , F., Huang , J.W., 2015. Providing long-term participation incentive in participatory sensing. IEEE Conf. on Computer Communications, p.2803–2811. http://dx.doi.org/10.1109/INFOCOM.2015.7218673
|
[32] |
Ghosh , R.A., 2005. Understanding Free Software Developers: Findings from the Floss Study. MIT Press, Cambrige, USA.
|
[33] |
Gousios , G., Pinzger , M., Deursen , A., 2014. An exploratory study of the pull-based software development model. Proc. 36th Int. Conf. on Software Engineering, p.345–355. http://dx.doi.org/10.1145/2568225.2568260
|
[34] |
Gousios , G., Zaidman , A., Storey , M.A.,
|
[35] |
Han , K., Zhang , C., Luo , J.,
|
[36] |
Hars , A., Ou , S., 2001. Working for free? Motivations of participating in open source projects. Proc. 34th Annual Hawaii Int. Conf. on System Sciences, p.1–9. http://dx.doi.org/10.1109/HICSS.2001.927045
|
[37] |
Hassan , A.E., 2009. Predicting faults using the complexity of code changes. Proc. 31st Int. Conf. on Software Engineering, p.78–88. http://dx.doi.org/10.1109/ICSE.2009.5070510
|
[38] |
Hertel , G., Niedner , S., Herrmann , S., 2003. Motivation of software developers in open source projects: an Internet-based survey of contributors to the Linux kernel.Res. Polic., 32(7):1159–1177. http://dx.doi.org/10.1016/S0048-7333(03)00047-7
|
[39] |
Ho , C.J., Vaughan , J.W., 2012. Online task assignment in crowdsourcing markets. Proc. 26th AAAI Conf. on Artificial Intelligence, p.45–51.
|
[40] |
Ho , C.J., Jabbari , S., Vaughan , J.W., 2013. Adaptive task assignment for crowdsourced classification. Proc. 30th Int. Conf. on Machine Learning, p.534–542.
|
[41] |
Hoffman , M.L., 1981. Is altruism part of human nature?J. Personal. Soc. Psychol., 40(1):121–137. http://dx.doi.org/10.1037/0022-3514.40.1.121
|
[42] |
Jaimes , L.G., Vergara-Laurens , I., Labrador , M.A., 2012. A location-based incentive mechanism for participatory sensing systems with budget constraints. Proc. 10th Annual IEEE Int. Conf. on Pervasive Computing and Communications, p.103–108. http://dx.doi.org/10.1109/PerCom.2012.6199855
|
[43] |
Jain , S., Gujar , S., Bhat , S.,
|
[44] |
Jeong , G., Kim , S., Zimmermann , T., 2009. Improving bug triage with bug tossing graphs. Proc. 7th Joint Meeting of the European Software Engineering Conf. and the ACM SIGSOFT Symp. on the Foundations of Software Engineering, p.111–120. http://dx.doi.org/10.1145/1595696.1595715
|
[45] |
Karger , D.R., Oh , S., Shah , D., 2011. Iterative learning for reliable crowdsourcing systems. Advances in Neural Information Processing Systems, p.1953–1961.
|
[46] |
Khetan , A., Oh , S., 2016. Achieving budget-optimality with adaptive schemes in crowdsourcing. Advances in Neural Information Processing Systems, p.4844–4852.
|
[47] |
Kittur , A., Smus , B., Khamkar , S.,
|
[48] |
Krishna , V., 2009. Auction Theory. Academic Press, New York, USA.
|
[49] |
Krontiris , I., Albers , A., 2012. Monetary incentives in participatory sensing using multi-attributive auctions.Int. J. Parall. Emerg. Distr. Syst., 27(4):317–336. http://dx.doi.org/10.1080/17445760.2012.686170
|
[50] |
Law , E., Ahn , L., 2011. Human computation.Synth. Lect. Artif. Intell. Mach. Learn., 5(3):1–121.
|
[51] |
Lazer , D., Kennedy , R., King , G.,
|
[52] |
Lee , J.S., Hoh , B., 2010. Sell your experiences: a market mechanism based incentive for participatory sensing. IEEE Int. Conf. on Pervasive Computing and Communications, p.60–68. http://dx.doi.org/10.1109/PERCOM.2010.5466993
|
[53] |
Li , G.L., Wang , J.N., Zheng , Y.D.,
|
[54] |
Li , H.W., Yu , B., 2014. Error rate bounds and iterative weighted majority voting for crowdsourcing. ePrint Archive, arXiv:1411.4086.
|
[55] |
Li , X., Dong , X.L., Lyons , K.,
|
[56] |
Lintott , C.J., Schawinski , K., Slosar , A.,
|
[57] |
Liu , Q., Peng , J., Ihler , A.T., 2012. Variational inference for crowdsourcing. Advances in Neural Information Processing Systems, p.692–700.
|
[58] |
Luo , T., Tan , H.P., Xia , L.R., 2014. Profit-maximizing incentive for participatory sensing. Proc. IEEE Conf. on Computer Communications, p.127–135. http://dx.doi.org/10.1109/INFOCOM.2014.6847932
|
[59] |
Malone , T.W., Laubacher , R., Dellarocas , C., 2009. Harnessing Crowds: Mapping the Genome of Collective Intelligence. MIT Sloan Research Paper No. 4732-09, Sloan School of Management, Massachusetts Institute of Technology, MA, USA. http://dx.doi.org/10.2139/ssrn.1381502
|
[60] |
Mamykina , L., Manoim , B., Mittal , M.,
|
[61] |
Maslow , A.H., Frager , R., Fadiman , J.,
|
[62] |
Mavridis , P., Gross-Amblard , D., Miklós , Z., 2016. Using hierarchical skills for optimized task assignment in knowledge-intensive crowdsourcing. Proc. 25th Int. Conf. on World Wide Web, p.843–853.
|
[63] |
Meng , R., Tong , Y.X., Chen , L.,
|
[64] |
Mockus , A., Fielding , R.T., Herbsleb , J.D., 2002. Two case studies of open source software development: Apache and Mozilla.ACM Trans. Softw. Eng. Meth., 11(3): 309–346. http://dx.doi.org/10.1145/567793.567795
|
[65] |
Moser , R., Pedrycz , W., Succi , G., 2008. A comparative analysis of the efficiency of change metrics and static code attributes for defect prediction. Proc. 30th Int. Conf. on Software Engineering, p.181–190. http://dx.doi.org/10.1145/1368088.1368114
|
[66] |
Nagappan , N., Ball , T., 2005. Use of relative code churn measures to predict system defect density. Proc. 27th Int. Conf. on Software Engineering, p.284–292. http://dx.doi.org/10.1109/ICSE.2005.1553571
|
[67] |
Nakakoji , K., Yamamoto , Y., Nishinaka , Y.,
|
[68] |
Ok , J., Oh , S., Shin , J.,
|
[69] |
Ouyang , W.R., Kaplan , L.M., Martin , P.,
|
[70] |
Pan , Y.H., 2016. Heading toward artificial intelligence 2.0. Engineering, 2(4):409–413. http://dx.doi.org/10.1016/J.ENG.2016.04.018
|
[71] |
Pierre , L., 1997. Collective intelligence: mankind’s emerging world in cyberspace. Bononno, R., translator. Perseus Books, Cambridge, USA.
|
[72] |
Quinn , A.J., Bederson , B.B., 2011. Human computation: a survey and taxonomy of a growing field. Proc. SIGCHI Conf. on Human Factors in Computing Systems, p.1403–1412. http://dx.doi.org/10.1145/1978942.1979148
|
[73] |
Raban , D.R., Harper , F.M., 2008. Motivations for Answering Questions Online.http://www.researchgate.net/publication/241053908
|
[74] |
Rahman , F., Devanbu , P.T., 2011. Ownership, experience and defects: a fine-grained study of authorship. Proc. 33rd Int. Conf. on Software Engineering, p.491–500. http://dx.doi.org/10.1145/1985793.1985860
|
[75] |
Rahman , F., Devanbu , P.T., 2013. How, and why, process metrics are better. Proc. 35th Int. Conf. on Software Engineering, p.432–441.
|
[76] |
Rana , R.K., Chou , C.T., Kanhere , S.S.,
|
[77] |
Raykar , V.C., Yu , S., 2012. Eliminating spammers and ranking annotators for crowdsourced labeling tasks. J. Mach. Learn. Res., 13(Feb):491–518.
|
[78] |
Raykar , V.C., Yu , S., Zhao , L.H.,
|
[79] |
Raykar , V.C., Yu , S., Zhao , L.H.,
|
[80] |
Raymond , E., 1999. The cathedral and the bazaar.Knowl. Technol. Polic., 12(3):23-49. http://dx.doi.org/10.1007/s12130-999-1026-0
|
[81] |
Rigby , P.C., German , D.M., Cowen , L.,
|
[82] |
Rogers , E.M., 2010. Diffusion of Innovations. Simon and Schuster, New York, USA.
|
[83] |
Sakaki , T., Okazaki , M., Matsuo , Y., 2010. Earthquake shakes Twitter users: real-time event detection by social sensors. Proc. 19th Int. Conf. on World Wide Web, p.851–860. http://dx.doi.org/10.1145/1772690.1772777
|
[84] |
Shah , N.B., Zhou , D., 2015. Double or nothing: multiplicative incentive mechanisms for crowdsourcing. Advances in Neural Information Processing Systems, p.1–9.
|
[85] |
Shah , N.B., Zhou , D., 2016. No oops, you won’t do it again: mechanisms for self-correction in crowdsourcing. Proc. 33rd Int. Conf. on Machine Learning, p.1–10.
|
[86] |
Shah , N.B., Zhou , D., Peres , Y., 2015. Approval voting and incentives in crowdsourcing. ePrint Archive, arXiv:1502.05696.
|
[87] |
She , J.Y., Tong , Y.X., Chen , L., 2015a. Utility-aware social event-participant planning. Proc. ACM Int. Conf. on Management of Data, p.1629–1643. http://dx.doi.org/10.1145/2723372.2749446
|
[88] |
She , J.Y., Tong , Y.X., Chen , L.,
|
[89] |
She , J.Y., Tong , Y.X., Chen , L.,
|
[90] |
Shen , H.W., Barabási , A.L., 2014. Collective credit allocation in science. PNAS, 111(34):12325–12330. http://dx.doi.org/10.1073/pnas.1401992111
|
[91] |
Smith , J.B., 1994. Collective Intelligence in Computer-Based Collaboration. CRC Press, Boca Raton, USA.
|
[92] |
Subramanian , A., Kanth , G.S., Vaze , R., 2013. Offline and online incentive mechanism design for smart-phone crowd-sourcing. ePrint Archive, arXiv:1310.1746.
|
[93] |
Subramanyam , R., Krishnan , M.S., 2003. Empirical analysis of CK metrics for object-oriented design complexity: implications for software defects. ACM Trans. Softw. Eng. Meth., 29(4):297–310. http://dx.doi.org/10.1109/TSE.2003.1191795
|
[94] |
Sullivan , B.L., Wood , C.L., Iliff , M.J.,
|
[95] |
Tamrawi , A., Nguyen , T.T., Al-Kofahi , J.M.,
|
[96] |
Tang , J.C., Cebrian , M., Giacobe , N.A.,
|
[97] |
Teodoro , R., Ozturk , P., Naaman , M.,
|
[98] |
Thebault-Spieker , J., Terveen , L.G., Hecht , B., 2015. Avoiding the south side and the suburbs: the geography of mobile crowdsourcing markets. Proc. 18th ACM Conf. on Computer Supported Cooperative Work & Social Computing, p.265–275. http://dx.doi.org/10.1145/2675133.2675278
|
[99] |
Thongtanunam , P., Tantithamthavorn , C., Kula , R.G.,
|
[100] |
Tian , T., Zhu , J., 2015. Max-margin majority voting for learning from crowds. Advances in Neural Information Processing Systems, p.1621–1629.
|
[101] |
Tong , Y.X., Chen , L., Ding , B.L., 2012a. Discovering threshold-based frequent closed itemsets over probabilistic data. Proc. IEEE 28th Int. Conf. on Data Engineering, p.270–281. http://dx.doi.org/10.1109/ICDE.2012.51
|
[102] |
Tong , Y.X., Chen , L., Cheng , Y.R.,
|
[103] |
Tong , Y.X., Cao , C.C., Zhang , C.J.,
|
[104] |
Tong , Y.X., Cao , C.C., Chen , L., 2014b. TCS: efficient topic discovery over crowd-oriented service data. Proc. 20th ACM Int. Conf. on Knowledge Discovery and Data Mining, p.861–870. http://dx.doi.org/10.1145/2623330.2623647
|
[105] |
Tong , Y.X., Chen , L., She , J.Y., 2015a. Mining frequent itemsets in correlated uncertain databases.J. Comput. Sci. Technol., 30(4):696–712. http://dx.doi.org/10.1007/s11390-015-1555-9
|
[106] |
Tong , Y.X., Meng , R., She , J.Y., 2015b. On bottleneck-aware arrangement for event-based social networks. Proc. 31st IEEE Int. Conf. on Data Engineering Workshops, p.216–223. http://dx.doi.org/10.1109/ICDEW.2015.7129579
|
[107] |
Tong , Y.X., She , J.Y., Meng , R., 2016a. Bottleneck-aware arrangement over event-based social networks: the maxmin approach.World Wide Web, 19(6):1151–1177. http://dx.doi.org/10.1007/s11280-015-0377-6
|
[108] |
Tong , Y.X., She , J.Y., Ding , B.L.,
|
[109] |
Tong , Y.X., She , J.Y., Ding , B.L.,
|
[110] |
Tong , Y.X., Zhang , X.F., Chen , L., 2016d. Tracking frequent items over distributed probabilistic data.World Wide Web, 19(4):579–604. http://dx.doi.org/10.1007/s11280-015-0341-5
|
[111] |
Tong , Y.X., Yuan , Y., Cheng , Y.R.,
|
[112] |
Tran-Thanh , L., Stein , S., Rogers , A.,
|
[113] |
Tsay , J., Dabbish , L., Herbsleb , J.D., 2014a. Influence of social and technical factors for evaluating contribution in GitHub. 36th Int. Conf. on Software Engineering, p.356–366. http://dx.doi.org/10.1145/2568225.2568315
|
[114] |
Tsay , J., Dabbish , L., Herbsleb , J.D., 2014b. Let’s talk about it: evaluating contributions through discussion in GitHub. Proc. 22nd ACM Int. Symp. on Foundations of Software Engineering, p.144–154. http://dx.doi.org/10.1145/2635868.2635882
|
[115] |
Vasilescu , B., Yu , Y., Wang , H.,
|
[116] |
Vickrey , W., 1961. Counterspeculation, auctions, and competitive sealed tenders.J. Finan., 16(1):8–37. http://dx.doi.org/10.1111/j.1540-6261.1961.tb02789.x
|
[117] |
von Ahn , L., Maurer , B., McMillen , C.,
|
[118] |
Wang , D., Abdelzaher , T.F., Kaplan , L.M.,
|
[119] |
Wang , D., Amin , M.T.A., Li , S.,
|
[120] |
Wang , H.M., Yin , G., Li , X.,
|
[121] |
Wang , J.N., Li , G.L., Kraska , T.,
|
[122] |
Wang , L., Zhou , Z.H., 2016. Cost-saving effect of crowdsourcing learning. Proc. 25th Int. Joint Conf. on Artificial Intelligence, p.2111–2117.
|
[123] |
Wang , W., Zhou , Z.H., 2015. Crowdsourcing label quality: a theoretical study.Sci. China Inform. Sci., 58(11):1–12. http://dx.doi.org/10.1007/s11432-015-5391-x
|
[124] |
Wauthier , F.L., Jordan , M.I., 2011. Bayesian bias mitigation for crowdsourcing. Advances in Neural Information Processing Systems, p.1800–1808.
|
[125] |
Welinder , P., Branson , S., Perona , P.,
|
[126] |
Whitehill , J., Wu , T., Bergsma , J.,
|
[127] |
Wu , W.J., Tsai , W.T., Li , W., 2013. An evaluation framework for software crowdsourcing.Front. Comput. Sci., 7(5):694–709. http://dx.doi.org/10.1007/s11704-013-2320-2
|
[128] |
Yan , Y., Fung , G.M., Rosales , R.,
|
[129] |
Yang , D.J., Fang , X., Xue , G.L., 2013. Truthful incentive mechanisms for k-anonymity location privacy. Proc. IEEE Conf. on Computer Communications, p.2994–3002. http://dx.doi.org/10.1109/INFCOM.2013.6567111
|
[130] |
Yang , D.J., Xue, G.L., Fang , X.,
|
[131] |
Ye , Y.W., Kishida , K., 2003. Toward an understanding of the motivation of open source software developers. Proc. 25th Int. Conf. on Software Engineering, p.419–429. http://dx.doi.org/10.1109/ICSE.2003.1201220
|
[132] |
Yu , Y., Yin , G., Wang , H.,
|
[133] |
Yu , Y., Yin , G., Wang , T.,
|
[134] |
Yu , Y., Wang , H.M., Yin , G.,
|
[135] |
Zhang , C.J., Chen , L., Tong , Y.X., 2014a. MaC: a probabilistic framework for query answering with machinecrowd collaboration. Proc. 23rd ACM Int. Conf. on Information and Knowledge Management, p.11–20. http://dx.doi.org/10.1145/2661829.2661880
|
[136] |
Zhang , C.J., Tong , Y.X., Chen , L., 2014b. Where to: crowdaided path selection.Proc. VLDB Endow., 7(11):2005–2016. http://dx.doi.org/10.14778/2733085.2733105
|
[137] |
Zhang , C.J., Chen , L., Tong , Y.,
|
[138] |
Zhang , Y., Chen , X., Zhou , D.,
|
[139] |
Zhao , D., Li , X.Y., Ma , H.D., 2014. How to crowdsource tasks truthfully without sacrificing utility: online incentive mechanisms with budget constraint. Proc. IEEE Conf. on Computer Communications, p.1213–1221. http://dx.doi.org/10.1109/INFOCOM.2014.6848053
|
[140] |
Zhong , J.H., Tang , K., Zhou , Z.H., 2015. Active learning from crowds with unsure option. Proc. 24th Int. Joint Conf. on Artificial Intelligence, p.1061–1067.
|
[141] |
Zhou , D., Basu , S., Mao , Y.,
|
[142] |
Zhou , Y., Chen , X., Li , J., 2014. Optimal PAC multiple arm identification with applications to crowdsourcing. Proc. 31st Int. Conf. on Machine Learning, p.217–225.
|
[143] |
Zhu , Y., Zhang , Q., Zhu , H.,
|
/
〈 | 〉 |