Synchronization of two different chaotic systems using Legendre polynomials with applications in secure communications
Saeed KHORASHADIZADEH, Mohammad-Hassan MAJIDI
Synchronization of two different chaotic systems using Legendre polynomials with applications in secure communications
In this study, a new controller for chaos synchronization is proposed. It consists of a state feedback controller and a robust control term using Legendre polynomials to compensate for uncertainties. The truncation error is also considered. Due to the orthogonal functions theorem, Legendre polynomials can approximate nonlinear functions with arbitrarily small approximation errors. As a result, they can replace fuzzy systems and neural networks to estimate and compensate for uncertainties in control systems. Legendre polynomials have fewer tuning parameters than fuzzy systems and neural networks. Thus, their tuning process is simpler. Similar to the parameters of fuzzy systems, Legendre coefficients are estimated online using the adaptation rule obtained from the stability analysis. It is assumed that the master and slave systems are the Lorenz and Chen chaotic systems, respectively. In secure communication systems, observer-based synchronization is required since only one state variable of the master system is sent through the channel. The use of observer-based synchronization to obtain other state variables is discussed. Simulation results reveal the effectiveness of the proposed approach. A comparison with a fuzzy sliding mode controller shows that the proposed controller provides a superior transient response. The problem of secure communications is explained and the controller performance in secure communications is examined.
Observer-based synchronization / Chaotic systems / Legendre polynomials / Secure communications
[1] |
Bagheri P, Shahrokhi M, Salarieh H, 2015. Adaptive observerbased synchronization of two non-identical chaotic systems with unknown parameters. J Vibr Contr, 23(3): 389–399. https://doi.org/10.1177/1077546315580052
|
[2] |
Chen CS, 2009. Quadratic optimal neural fuzzy control for synchronization of uncertain chaotic systems. Exp Syst Appl, 36(9):11827–11835. https://doi.org/10.1016/j.eswa.2009.04.007
|
[3] |
Cherrier E, Boutayeb M, Ragot J, 2006. Observers-based synchronization and input recovery for a class of nonlinear chaotic models. IEEE Trans Circ Syst I, 53(9): 1977–1988. https://doi.org/10.1109/TCSI.2006.882817
|
[4] |
Chien MC, Huang AC, 2012. Adaptive impedance controller design for flexible-joint electrically-driven robots without computation of the regressor matrix. Robotica, 30(1): 133–144. https://doi.org/10.1017/S0263574711000403
|
[5] |
Effa JY, Essimbi BZ, Ngundam JM, 2009. Synchronization of improved chaotic Colpitts oscillators using nonlinear feedback control. Nonl Dynam, 58(1-2):39–48. https://doi.org/10.1007/s11071-008-9459-7
|
[6] |
Fard MB, Khorashadizadeh S, 2015. Model free robust impedance control of robot manipulators using Fourier series expansion. AI & Robotics, p.1–7. https://doi.org/10.1109/RIOS.2015.7270740
|
[7] |
Fateh MM, Khorashadizadeh S, 2012a. Robust control of electrically driven robots by adaptive fuzzy estimation of uncertainty. Nonl Dynam, 69(3):1465–1477. https://doi.org/10.1007/s11071-012-0362-x
|
[8] |
Fateh MM, Khorashadizadeh S, 2012b. Optimal robust voltage control of electrically driven robot manipulators. Nonl Dynam, 70(2):1445–1458. https://doi.org/10.1007/s11071-012-0546-4
|
[9] |
Fateh MM, Ahmadi SM, Khorashadizadeh S, 2014a. Adaptive RBF network control for robot manipulators. J AI Data Min, 2(2):159–166. https://doi.org/10.22044/jadm.2014.246
|
[10] |
Fateh MM, Azargoshasb S, Khorashadizadeh S, 2014b. Modelfree discrete control for robot manipulators using a fuzzy estimator. Int J Comput Math Electr Electron Eng, 33(3): 1051–1067. https://doi.org/10.1108/COMPEL-05-2013-0185
|
[11] |
Grassi G, Mascolo S, 1997. Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal. IEEE Trans Circ Syst I, 44(10):1011–1014. https://doi.org/10.1109/81.633891
|
[12] |
Grassi G, Mascolo S, 1998. Design of nonlinear observers for hyperchaos synchronization using a scalar signal. IEEE Int Symp on Circuits and Systems, p.283–286. https://doi.org/10.1109/ISCAS.1998.704006
|
[13] |
Grzybowski JMV, Rafikov M, Balthazar JM, 2009. Synchronization of the unified chaotic system and application in secure communication. Commun Nonl Sci Numer Simul, 14(6):2793–2806. https://doi.org/10.1016/j.cnsns.2008.09.028
|
[14] |
Gupta MM, Jin L, Homma N, 2005. Static and Dynamic Neural Networks: from Fundamentals to Advanced Theory. Wiley-IEEE Press, New York, USA. https://doi.org/10.1002/0471427950
|
[15] |
Hsu CF, 2011. Adaptive fuzzy wavelet neural controller design for chaos synchronization. Expert Syst Appl, 38(8): 10475–10483. https://doi.org/10.1016/j.eswa.2011.02.092
|
[16] |
Huang AC, Wu SC, Ting WF, 2006. A FAT-based adaptive controller for robot manipulators without regressor matrix: theory and experiments. Robotica, 24(2):205–210. https://doi.org/10.1017/S0263574705002031
|
[17] |
Izadbakhsh A, Khorashadizadeh S, 2017. Robust task-space control of robot manipulators using differential equations for uncertainty estimation. Robotica, 35(9):1923–1938. https://doi.org/10.1017/S0263574716000588
|
[18] |
Kai CY, Huang AC, 2013. A regressor-free adaptive controller for robot manipulators without Slotine and Li’s modification. Robotica, 31(7):105058. https://doi.org/10.1017/S0263574713000301
|
[19] |
Khorashadizadeh S, Fateh MM, 2013. Adaptive Fourier seriesbased control of electrically driven robot manipulators. 3rd Int Conf on Control, Instrumentation, and Automation, p.213–218. https://doi.org/10.1109/ICCIAutom.2013.6912837
|
[20] |
Khorashadizadeh S, Fateh MM, 2015. Robust task-space control of robot manipulators using Legendre polynomials for uncertainty estimation. Nonl Dynam, 79(2):1151–1161. https://doi.org/10.1007/s11071-014-1730-5
|
[21] |
Khorashadizadeh S, Fateh MM, 2017. Uncertainty estimation in robust tracking control of robot manipulators using the Fourier series expansion. Robotica, 35(2):310–336. https://doi.org/10.1017/S026357471500051X
|
[22] |
Khorashadizadeh S, Mahdian M, 2016. Voltage tracking control of DC-DC boost converter using brain emotional learning. 4th Int Conf on Control, Instrumentation, and Automation, p.268–272. https://doi.org/10.1109/ICCIAutom.2016.7483172
|
[23] |
Kreyszig E, 2007. Advanced Engineering Mathematics. John Wiley & Sons, Hoboken, USA.
|
[24] |
Kuo CL, 2011. Design of a fuzzy sliding-mode synchronization controller for two different chaos systems. Comput Math Appl, 61(8):2090–2095. https://doi.org/10.1016/j.camwa.2010.08.080
|
[25] |
Laoye JA, Vincent UE, Kareem SO, 2009. Chaos control of 4D chaotic systems using recursive backstepping nonlinear controller. Chaos Sol Fract, 39(1):356–362. https://doi.org/10.1016/j.chaos.2007.04.020
|
[26] |
Lee SM, Ji DH, Park JH,
|
[27] |
Li LL, Liu Y, Yao QG, 2014. Robust synchronization of chaotic systems using slidingmode and feedback control. J Zhejiang Univ-Sci C (Comput & Electron), 15(3):211–222. https://doi.org/10.1631/jzus.C1300266
|
[28] |
Li XR, Zhao LY, Zhao GZ, 2005. Sliding mode control for synchronization of chaotic systems with structure or parameters mismatching. J Zhejiang Univ-Sci, 6A(6):571–576. https://doi.org/10.1631/jzus.2005.A0571
|
[29] |
Liao TL, Tsai SH, 2000. Adaptive synchronization of chaoticsystems and its application to secure communications. Chaos Sol Fract, 11(9):1387–1396. https://doi.org/10.1016/S0960-0779(99)00051-X
|
[30] |
Lin TC, Huang FY, Du ZB,
|
[31] |
Liu MQ, Zhang JH, 2008. Exponential synchronization of general chaotic delayed neural networks via hybrid feedback. J Zhejiang Univ-Sci A, 9(2):262–270. https://doi.org/10.1631/jzus.A071336
|
[32] |
Lu JA, Wu XQ, Han XP,
|
[33] |
Naseh MR, Haeri M, 2009. Robustness and robust stability of the active sliding mode synchronization. Chaos Sol Fract, 39(1):196–203. https://doi.org/10.1016/j.chaos.2007.01.123
|
[34] |
Nijsure YA, Kaddoum G, Gagnon G,
|
[35] |
Ogata K, 1995. Discrete-Time Control Systems (2nd Ed.). Prentice Hall, Englewood Cliffs, USA.
|
[36] |
Pecora LM, Carroll TL, 1991. Driving systems with chaotic signals. Phys Rev A, 44(4):2374–2383. https://doi.org/10.1103/PhysRevA.44.2374
|
[37] |
Pogromsky A, Nijmeijer H, 1998. Observer-based robust synchronization of dynamical systems. Int J Bifurc Chaos, 8(11):2243–2254.
|
[38] |
Shen C, Shi ZG, Ran LX, 2006. Adaptive synchronization of chaotic Colpitts circuits against parameter mismatches and channel distortions. J Zhejiang Univ-Sci A, 7(S2): 228–236. https://doi.org/10.1631/jzus.2006.AS0228
|
[39] |
Shi ZG, Hong SH, Chen JM,
|
[40] |
Shi ZG, Bi SJ, Zhang HT,
|
[41] |
Slotine JJE, Li WP, 1991. Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, USA.
|
[42] |
Wang C, Ge SS, 2001. Adaptive backstepping control of uncertain Lorenz system. Int J Bifurc Chaos, 11(4):1115–1119. https://doi.org/10.1142/S0218127401002560
|
[43] |
Wang H, Ye JM, Miao ZH,
|
[44] |
Wang LX, 1997. A Course in Fuzzy Systems and Control. Prentice-Hall, New York, USA.
|
[45] |
Wang Q, Chen Y, 2006. Generalized Q-S (lag, anticipated and complete) synchronization in modified Chua’s circuit and Hindmarsh-Rose systems. Appl Math Comput, 181(1):48–56. https://doi.org/10.1016/j.amc.2006.01.017
|
[46] |
Yang JQ, Chen YT, Zhu FL, 2015. Associated observer-based synchronization for uncertain chaotic systems subject to channel noise and chaos-based secure communication. Neurocomputing, 167:587–595. https://doi.org/10.1016/j.neucom.2015.04.030
|
[47] |
Yassen MT, 2005. Controlling chaos and synchronization for new chaotic system using linear feedback control. Chaos Sol Fract, 26(3):913–920. https://doi.org/10.1016/j.chaos.2005.01.047
|
[48] |
Zadeh SMH, Khorashadizadeh S, Fateh MM,
|
/
〈 | 〉 |