Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy
Jia-qiang YANG, Rong-sen YIN, Xiao-jun ZHANG, Jin HUANG
Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy
Electrical pole-changing technology leads to torque ripple and speed fluctuation despite broadening the constant power speed range of the multiphase induction machine (IM) system. To reduce the torque ripple and speed fluctuation of the machine, we investigate an exponential response electrical pole-changing method for five-phase IM with a current sliding-mode control strategy. This control strategy employs the dual-plane (d1–q1 and d2–q2) vector control method, which allows the IM to operate under different pole modes. Current sliding-mode controllers are applied instead of conventional proportional integral (PI) controllers to adjust the current vectors, and exponential current response achieves a smooth transition between the d1–q1 and d2–q2 planes. Compared with the step response pole-changing with PI control method, the proposed pole-changing method greatly reduces the torque ripple and speed fluctuation of the IM during the pole-changing process. Experimental results verify the exceptional performance of the proposed electrical pole-changing strategy.
Five-phase induction machine / Pole-change / Sliding-mode control / Exponential response / Torque ripple reduction
[1] |
Abdel-Khalik,A.S., Daoud, M.I., Ahmed,S. ,
|
[2] |
Abd Hafez,A.A., Todd,R., Forsyth,A.J. ,
|
[3] |
Aliabad,A.D., Mirsalim, M., 2012. Analytic modeling and dynamic analysis of pole-changing line-start permanentmagnet motors. IET Electr. Power Appl., 6(3):149–155. https://doi.org/10.1049/iet-epa.2011.0146
|
[4] |
Aliabad,A.D., Mirsalim, M., Ershad,N.F. , 2010. Line-start permanent-magnet motors: significant improvements in starting torque, synchronization, and steady-state performance. IEEE Trans. Magn., 46(12):4066–4072. https://doi.org/10.1109/TMAG.2010.2070876
|
[5] |
Barrero,F., Duran,M.J., 2016. Recent advances in the design, modeling and control of multiphase machines—part 1. IEEE Trans. Ind. Electron., 63(1):449–458. https://doi.org/10.1109/TIE.2015.2447733
|
[6] |
Deng,Y., Wang,Y.B., Teo,K.H.,
|
[7] |
Dujic,D., Jones,M., Levi,E.,
|
[8] |
Duran,M.J., Barrero, F., 2016. Recent advances in the design, modeling and control of multiphase machines—part 2. IEEE Trans. Ind. Electron., 63(1):459–468. https://doi.org/10.1109/TIE.2015.2448211
|
[9] |
Duran,M.J., Prieto, J., Barrero,F. , 2013. Space vector PWM with reduced common-mode voltage for five-phase induction motor drives operating in over-modulation zone. IEEE Trans. Power Electron., 28(8):4030–4040. https://doi.org/10.1109/TPEL.2012.2229394
|
[10] |
Ershad,N.F., Mirsalim, M., Aliabad,A.D. , 2013.Line-start permanent magnet motors: proper design for polechanging starting method. IET Electr. Power Appl., 7(6): 470–476. https://doi.org/10.1049/iet-epa.2012.0059
|
[11] |
Gao,W.B., Wang,Y.F., Homaifa,A., 1995. Discrete-time variable structure control systems. IEEE Trans. Ind. Electron., 42(2):117–122. https://doi.org/10.1109/41.370376
|
[12] |
Ge,B.M., Sun,D.S., Wu,W.L., 2013. Winding design, modeling, and control for pole-phase modulation induction motors. IEEE Trans. Magn., 49(2):898–911. https://doi.org/10.1109/TMAG.2012.2208652
|
[13] |
Gregor,R., Barrero, F., Toral,S.L. ,
|
[14] |
Hoang,K.D., Ren,Y., Zhu,Z.Q.,
|
[15] |
Jiang,S.Z., Chau,K.T., Chan,C.C., 2003. Spectral analysis of a new six-phase pole-changing induction motor drive for electric vehicles. IEEE Trans. Ind. Electron., 50(1):123–131. https://doi.org/10.1109/TIE.2002.807662
|
[16] |
Jones,M., Satiawan, N.W., Bodo,N. ,
|
[17] |
Kelly,J.W., 2007. A Novel Control Scheme for a Pole-Changing Induction Motor Drive. PhD Thesis, Michigan State University, East Lansing, MI.
|
[18] |
Kelly,J.W., Strangas, E.G., 2007. Torque control during polechanging transition of a 3:1 pole induction machine. Proc. Int. Conf. on Electrical Machines and Systems, p.1723–1728.
|
[19] |
Lee,J.D., Khoo,S., Wang,Z.B., 2013. DSP-based slidingmode control for electromagnetic-levitation preciseposition system. IEEE Trans. Ind. Inform., 9(2):817–827. https://doi.org/10.1109/TII.2012.2219062
|
[20] |
Levi,E., 2008. Multiphase electric machines for variablespeed applications. IEEE Trans. Ind. Electron., 55(5): 1893–1909.https://doi.org/10.1109/TIE.2008.918488
|
[21] |
Levi,E., 2016. Advances in converter control and innovative exploitation of additional degrees of freedom for multi phase machines. IEEE Trans. Ind. Electron., 63(1):433–448. https://doi.org/10.1109/TIE.2015.2434999
|
[22] |
Levi,E., Bojoi,R., Profumo,F.,
|
[23] |
Levi,E., Barrero, F., Duran,M.J. , 2016. Multiphase machines and drives—revisited. IEEE Trans. Ind. Electron., 63(1): 429–432. https://doi.org/10.1109/TIE.2015.2493510
|
[24] |
Li,F.H., Chau,K.T., Liu,C.H., 2016. Pole-changing fluxweakening DC-excited dual-memory machines for electric vehicles. IEEE Trans. Energy Conv., 31(1):27–36. https://doi.org/10.1109/TEC.2015.2479458
|
[25] |
Lipo,T.A., 1994. Analysis of concentrated winding induction machines for adjustable speed drive applications—experimental results. IEEE Trans. Energy Conv., 9(4): 695–700. https://doi.org/10.1109/60.368339
|
[26] |
Lipo,T.A., White,J.C., 1991a. Analysis of a concentrated winding induction machine for adjustable speed drive applications: part 1 (motor analysis). IEEE Trans. Energy Conv., 6(4):679–683. https://doi.org/10.1109/60.103641
|
[27] |
Lipo,T.A., White,J.C., 1991b. Analysis of a concentrated winding induction machine for adjustable speed drive applications: part 2 (motor design and performance). IEEE Trans. Energy Conv., 6(4):684–692. https://doi.org/10.1109/60.103642
|
[28] |
Luis,S.I., 2014. Space phases theory and control of multiphase machines through their decoupling into equivalent threephase machines. Electr. Eng., 96(1):79–94. https://doi.org/10.1007/s00202-013-0278-6
|
[29] |
Martin,J., Dujic,D., Levi,E.,
|
[30] |
Mengoni,M., Zarri,L., Gritli,Y.,
|
[31] |
Osama,M., Lipo,T.A., 1997. Modeling and analysis of a widespeed-range induction motor drive based on electrical pole changing. IEEE Trans. Ind. Appl., 33(5):1177–3184. https://doi.org/10.1109/IAS.1996.557047
|
[32] |
Shi,L.W., Zhou,B., 2016. Analysis of a new five-phase fault-tolerant doubly salient brushless DC generator. IET Electr. Power Appl., 10(7):633–640. https://doi.org/10.1049/iet-epa.2015.0589
|
[33] |
Subotic,I., Bodo,N., Levi,E.,
|
[34] |
Tian,M.M., Wang,X.H., Li,G.Q., 2016. Line-start permanent magnet synchronous motor starting capability improvement using pole-changing method. 11th Conf. on Industrial Electronics and Applications, p.479–483.
|
[35] |
Tuan,D.M., Man,Z.H., Zhang,C.S.,
|
[36] |
Utkin,V.I., 1977. Variable structure systems with sliding modes. IEEE Trans. Autom. Contr., 22(2):212–222. https://doi.org/10.1109/TAC.1977.1101446
|
[37] |
Utkin,V.I., Guldner, J., Shi,J. , 1999. Sliding Mode Control in Electromechanical Systems. Taylor & Francis, London.
|
[38] |
Wang,D., Lin,H.Y., Yang,H.,
|
[39] |
Wang,D., Lin,H.Y., Yang,H.,
|
[40] |
Wang,D., Lin,H.Y., Yang,H.,
|
/
〈 | 〉 |