On-chip optical interconnect using visible light

Wei CAI, Bing-cheng ZHU, Xu-min GAO, Yong-chao YANG, Jia-lei YUAN, Gui-xia ZHU, Yong-jin WANG, Peter GRÜNBERG

PDF(675 KB)
PDF(675 KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (9) : 1288-1294. DOI: 10.1631/FITEE.1601720
Article
Article

On-chip optical interconnect using visible light

Author information +
History +

Abstract

We propose and fabricate a monolithic optical interconnect ona GaN-on-silicon platform using a wafer-level technique. Because theInGaN/GaN multiple-quantum-well diodes (MQWDs) can achieve light emissionand detection simultaneously, the emitter and collector sharing identicalMQW structure are produced using the same process. Suspended waveguidesinterconnect the emitter with the collector to form in-plane lightcoupling. Monolithic optical interconnect chip integrates the emitter,waveguide, base, and collector into a multi-component system witha common base. Output states superposition and 1×2 in-planelight communication are experimentally demonstrated. The proposedmonolithic optical interconnect opens a promising way toward the diverseapplications from in-plane visible light communication to light-inducedartificial synaptic devices, intelligent display, on-chip imaging,and optical sensing.

Keywords

Homogeneous integration / Multiple-quantum-welldiode / Visible light interconnection / Coexistence of light emission and photodetection

Cite this article

Download citation ▾
Wei CAI, Bing-cheng ZHU, Xu-min GAO, Yong-chao YANG, Jia-lei YUAN, Gui-xia ZHU, Yong-jin WANG, Peter GRÜNBERG. On-chip optical interconnect using visible light. Front. Inform. Technol. Electron. Eng, 2017, 18(9): 1288‒1294 https://doi.org/10.1631/FITEE.1601720

References

[1]
Bai , D., Wu , T., Li , X., , 2016. SuspendedGaN-based nanostructure for integrated optics. Appl. Phys. B, 122(1):1–7. https://doi.org/10.1007/s00340-015-6293-8
[2]
Brubaker , M.D., Blanchard , P.T., Schlager , J.B., , 2013. On-chip optical interconnects made with gallium nitride nanowires. Nano Lett., 13(2):374–377. https://doi.org/10.1021/nl303510h
[3]
Cai , W., Gao , X., Yuan , W., , 2016a.Integratedp-n junction InGaN/GaN multiple-quantum-well devices with diversefunctionalities. Appl. Phys. Expr., 9(5):052204. https://doi.org/10.7567/APEX.9.052204
[4]
Cai , W., Yang , Y., Gao , X., , 2016b. On-chipintegration of suspended InGaN/GaN multiple-quantum-well devices withversatile functionalities. Opt. Expr., 24(6): 6004–6010. https://doi.org/10.1364/OE.24.006004
[5]
Cao , X., Yue , T., Lin , X., , 2016. Computationalsnapshot multispectral cameras: toward dynamic capture of the spectralworld. IEEE SignalProcess. Mag., 33(5): 95–108. https://doi.org/10.1109/MSP.2016.2582378
[6]
Chen , R., Tran , T.T.D., Ng , K.W., , 2011. Nanolasers grown on silicon. Nat. Photon., 5(3):170–175. https://doi.org/10.1038/nphoton.2010.315
[7]
Dai , Q., 2017. Functional imaging of one millionneurons at synaptic resolution simultaneously with a novel videorate,sub-gigapixel microscopy at centimeter scale fieldof-view, sub-micronresolution. CSH Asia Conf. on Primate Neuroscience:Perception, Cognition and Disease Models, in press.
[8]
Feng , M., Holonyak , N.Jr, Hafez , W., 2004. Light-emittingtransistor: light emission from InGaP/GaAs heterojunction bipolartransistors. Appl.Phys. Lett., 84(1): 151–153. https://doi.org/10.1063/1.1637950
[9]
Jhou , Y., Chen , C.H., Chuang , R.W.K., , 2005. Nitridebased light emitting diode and photodetector dual functiondevices with InGaN/GaN multiple quantum well structures. Solid-State Electron., 49(8):1347–1351. https://doi.org/10.1016/j.sse.2005.06.002
[10]
Jiang , Z., Atalla , M.R., You , G., , 2014. Monolithic integration of nitride light emitting diodes and photodetectorsfor bi-directional optical communication. Opt. Lett., 39(19):5657–5660. https://doi.org/10.1364/OL.39.005657
[11]
Krost , A.,Dadgar , A., 2002. GaN-based optoelectronics on silicon substrates. Mat. Sci. Eng. B, 93(1):77–84. https://doi.org/10.1016/S0921-5107(02)00043-0
[12]
Kuykendall , T.,Ulrich , P., Aloni , S., , 2007. Complete composition tunability of InGaN nanowires using a combinatorialapproach. Nat.Mater., 6(12):951–956. https://doi.org/10.1038/nmat2037
[13]
Li , X., Shi , Z., Zhu , G., , 2014. High efficiencymembrane light emitting diode fabricated by back wafer thinning technique. Appl. Phys. Lett., 105(3):2211–2213. https://doi.org/10.1063/1.4890859
[14]
Li , X.,Zhu , G., Gao , X., , 2015. Suspendedp-n junction InGaN/GaN multiple-quantum-well device with selectablefunctionality. IEEE Photon. J., 7(6):1–7. https://doi.org/10.1109/JPHOT.2015.2499544
[15]
Liao , C.L., Ho , C.L., Chang , Y.F.,, 2014. High-speed light-emitting diodes emitting at 500 nm with 463-MHzmodulation bandwidth. IEEE Electron Dev. Lett., 35(5):563–565. https://doi.org/10.1109/LED.2014.2304513
[16]
McKendry, J.J., Massoubre , D., Zhang , S., , 2012. Visible-light communications using a CMOS-controlled micro-light-emitting-diodearray. J. Lightw.Technol., 30(1):61–67. https://doi.org/10.1109/JLT.2011.2175090
[17]
Noda, S., Fujita , M., 2009. Light-emitting diodes: photonic crystal efficiency boost. Nat. Photon., 3(3):129–130. https://doi.org/10.1038/nphoton.2009.15
[18]
Qian , F., Li , Y., Gradečak , S., , 2008. Multiquantum-well nanowire heterostructures for wavelengthcontrolledlasers. Nat. Mater., 7(9):701–706. https://doi.org/10.1038/nmat2253
[19]
Sato , T.,Takeda , K., Shinya , A., , 2015. Photoniccrystal lasers for chip-to-chip and on-chip optical interconnects. IEEE J. Sel. Top. Quant.Electron., 21(6):728–737. https://doi.org/10.1109/JSTQE.2015.2420991
[20]
Schubert , E.F., Gessmann , T., Kim , J.K., 2005. LightEmitting Diodes. John Wiley & Sons,Inc. https://dx.doi.org/10.1002/0471238961.1209070811091908.a01.pub2
[21]
Sekiya , T., Sasaki , T., Hane , K., 2015. Design, fabrication,and optical characteristics of freestanding GaN waveguides on siliconsubstrate. J. Vac.Sci. Technol. B, 33(3):031207. https://doi.org/10.1116/1.4917487
[22]
Shokhovets , S., Himmerlich , M., Kirste , L., , 2015. Birefringence and refractive indices of wurtzite GaN in the transparencyrange. Appl. Phys.Lett., 107(9):092104. https://doi.org/10.1063/1.4929976
[23]
Sun , C., Wade , M.T., Lee , Y., , 2015. Single-chip microprocessor that communicates directly using light. Nature, 528(7583):534–538. https://doi.org/10.1038/nature16454
[24]
Tchernycheva , M., Messanvi , A., de Luna Bugallo ,A., , 2014. Integrated photonic platform based on InGaN/ GaN nanowireemitters and detectors. Nano Lett., 14(6):3515–3520. https://doi.org/10.1021/nl501124s
[25]
Triviño , N.V.,Butte , R., Carlin , J.F., , 2015. Continuous wave blue lasing in III-nitride nanobeam cavity on silicon. Nano Lett., 15(2):1259–1263. https://doi.org/10.1021/nl504432d
[26]
van Zeghbroeck , B., Harder , C., Meier , H.P., , 1989. Photon transport transistor. Int. TechnicalDigest on Electron Devices Meeting, p.543–546. https://doi.org/10.1109/IEDM.1989.74340
[27]
Vučić , J., Kottke , C.,Nerreter , S., , 2010.513 Mbit/s visible light communications link based on DMT-modulationof a white LED. J. Lightw. Technol., 28(24):3512–3518. https://doi.org/10.1109/JLT.2010.2089602
[28]
Wang , Y., Zhu , G., Cai , W., , 2016. On-chip photonicsystem using suspended pn junction InGaN/GaN multiple quantum wellsdevice and multiple waveguides. Appl. Phys. Lett., 108(16):162102. https://doi.org/10.1063/1.4947280
[29]
Wierer , J.J., David , A., Megens , M.M., 2009. III-nitridephotonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photon., 3(3):163–169. https://doi.org/10.1038/nphoton.2009.21
[30]
Yang , Y., Zhu , B., Shi , Z., , 2017. Multi-dimensionalspatial light communication made with on-chip InGaN photonic integration. Opt. Matt., 66:659–663. https://doi.org/10.1016/j.optmat.2017.03.017
[31]
Yuan , J., Cai , W., Gao , X., , 2016. Monolithicintegration of a suspended light-emitting diode with a Y-branch structure. Appl. Phys. Expr., 9(3):032202. https://doi.org/10.7567/APEX.9.032202
[32]
Zhang , Y., Oka , T., Suzuki , R., , 2014. Electricallyswitchable chiral light-emitting transistor. Science, 344(6185):725–728. https://doi.org/10.1126/science.1251329

RIGHTS & PERMISSIONS

2017 Zhejiang University and Springer-Verlag GmbHGermany
PDF(675 KB)

Accesses

Citations

Detail

Sections
Recommended

/