Passive source localization using importance sampling based on TOA and FOA measurements

Rui-rui LIU, Yun-long WANG, Jie-xin YIN, Ding WANG, Ying WU

PDF(490 KB)
PDF(490 KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (8) : 1167-1179. DOI: 10.1631/FITEE.1601657
Article
Article

Passive source localization using importance sampling based on TOA and FOA measurements

Author information +
History +

Abstract

Passive source localization via a maximum likelihood (ML) estimator can achieve a high accuracy but involves high calculation burdens, especially when based on time-of-arrival and frequency-of-arrival measurements for its internal nonlinearity and nonconvex nature. In this paper, we use the Pincus theorem and Monte Carlo importance sampling (MCIS) to achieve an approximate global solution to the ML problem in a computationally efficient manner. The main contribution is that we construct a probability density function (PDF) of Gaussian distribution, which is called an important function for efficient sampling, to approximate the ML estimation related to complicated distributions. The improved performance of the proposed method is attributed to the optimal selection of the important function and also the guaranteed convergence to a global maximum. This process greatly reduces the amount of calculation, but an initial solution estimation is required resulting from Taylor series expansion. However, the MCIS method is robust to this prior knowledge for point sampling and correction of importance weights. Simulation results show that the proposed method can achieve the Cramér-Rao lower bound at a moderate Gaussian noise level and outperforms the existing methods.

Keywords

Passive source localization / Time of arrival (TOA) / Frequency of arrival (FOA) / Monte Carlo importance sampling (MCIS) / Maximum likelihood (ML)

Cite this article

Download citation ▾
Rui-rui LIU, Yun-long WANG, Jie-xin YIN, Ding WANG, Ying WU. Passive source localization using importance sampling based on TOA and FOA measurements. Front. Inform. Technol. Electron. Eng, 2017, 18(8): 1167‒1179 https://doi.org/10.1631/FITEE.1601657

References

[1]
Alizadeh,F., Goldfarb, D., 2003. Second-order cone programming.Math. Prog., 95(1):3–51. https://doi.org/10.1007/s10107-002-0339-5
[2]
Beck,A., Stoica, P., Li,J. , 2008. Exact and approximate solutions of source localization problems.IEEE Trans. Signal Process., 56(5):1770–1778. https://doi.org/10.1109/TSP.2012.2191778
[3]
Broyden,C.G., 1970. The convergence of a class of doublerank minimization algorithms 1: general considerations.IMA J. Appl. Math., 6(1):76–90. https://doi.org/10.1093/imamat/6.1.76
[4]
Chan,Y.T., Hang,H.Y.C., Ching,P.C. , 2006. Exact and approximate maximum likelihood localization algorithms.55(1):10–16. https://doi.org/10.1109/TVT.2005.861162
[5]
Cheung,K.W. , So,H.C., Ma,W.K.,, 2004. Least squares algorithms for time-of-arrival-based mobile location.IEEE Trans. Signal Process., 52(4):1121–1130. https://doi.org/10.1109/TSP.2004.823465
[6]
Coleman,T.F., Li,Y., An,I., 2006. Trust region approach for nonlinear minimization subject to bounds.SIAM J. Optim., 6(2):418–445. https://doi.org/10.1137/0806023
[7]
Dong,L., 2012. Cooperative localization and tracking of mobile ad hoc networks.IEEE Trans. Signal Process., 60(7):3907–3913. https://doi.org/10.1109/TSP.2012.2191778
[8]
Elvira,V., Martino, L., Luengo,D. , , 2016. Heretical multiple importance sampling.IEEE Signal Process. Lett., 23(10):1474–1478. https://doi.org/10.1109/LSP.2016.2600678
[9]
Engel,U., 2009. A geolocation method using TOA and FOA measurements.positioning, navigation and communication. IEEE Workshop on Positioning, p.77–82. https://doi.org/10.1109/WPNC.2009.4907807
[10]
Fletcher,R., Reeves, C.M., 1964. Function minimization by conjugate gradients.Comput. J., 7(2):149–154. https://doi.org/10.1090/S0025.5718.1970.0274029.X
[11]
Foy,W.H., 1976. Position-location solutions by Taylor-series estimation.IEEE Trans. Aerosp. Electron. Syst., AES-12(2):187–194. https://doi.org/10.1109/TAES.1976.308294
[12]
Fu,Z., Sun,X., Liu,Q., , 2015. Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing.IEICE Trans. Commun., 98(1):190–200. https://doi.org/10.1109/TSP.2012.2191778
[13]
Gu,B., Sun,X., Sheng,V.S. , 2017. Structural minimax probability machine.IEEE Trans. Neur. Netw. Learn. Syst., 28(7):1646–1656. https://doi.org/10.1109/TNNLS.2016.2544779
[14]
Huang,J.G., Xie,D., Li,X., , 2006. Maximum likelihood DOA estimator based on importance sampling.IEEE Region 10 Conf., p.1–4. https://doi.org/10.1109/TENCON.2006.344051
[15]
Kay,S.M., 1993. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory.Prentice-Hall, London, p.111–136.
[16]
Kay,S.M, 2006. Intuitive Probability and Random Processes Using MATLAB.Springer, Berlin. https://doi.org/10.1007/b104645
[17]
Knapp,C., Carter, G., 1976. The generalized correlation method for estimation of time delay.IEEE Trans. Acoust. Speech Signal Process., 24(4):320–327. https://doi.org/10.1109/TASSP.1976.1162830
[18]
Ma,Z., Ho,K.C., 2011. TOA localization in the presence of random sensor position errors.IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.2468–2471. https://doi.org/10.1109/ICASSP.2011.5946984
[19]
Masmoudi,A., Bellili, F., Affes,S. , , 2013. A maximum likelihood time delay estimator in a multipath environment using importance sampling.IEEE Trans. Signal Process., 61(1):182–193. https://doi.org/10.1109/TSP.2012.2222402
[20]
Pan,Z., Lei,J., Zhang,Y., , 2016. Fast motion estimation based on content property for low-complexity H.265/HEVC encoder.IEEE Trans. Broadcast., 62(3):1–10. https://doi.org/10.1109/TBC.2016.2580920
[21]
Papakonstantinou,K., Slock, D., 2009. Hybrid TOA/AOD/Doppler-shift localization algorithm for NLOS environments.Int. Symp. on Personal, Indoor and Mobile Radio Communications, p.1948–1952. https://doi.org/10.1109/PIMRC.2009.5450008
[22]
Patwari,N., Ash,J.N., Kyperountas,S. , , 2005. Locating the nodes: cooperative localization in wireless sensor networks.IEEE Signal Process. Mag., 22(4):54–69. https://doi.org/10.1109/MSP.2005.1458287
[23]
Pincus,M., 1968. A closed form solution of certain programming problems.Oper. Res., 16(3):690–694. https://doi.org/10.1287/opre.16.3.690
[24]
Ramlall,R., Chen,J., Swindlehurst,A.L. , 2014. Non-line-ofsight mobile station positioning algorithm using TOA, AOA, and Doppler-shift.Ubiquitous Positioning Indoor Navigation and Location Based Service, p.180–184. https://doi.org/10.1109/UPINLBS.2014.7033726
[25]
Rappaport,T.S., Reed, J.H., Woerner,B.D. , 1996. Position location using wireless communications on highways of the future.IEEE Commun. Mag., 34(10):33–41. https://doi.org/10.1109/35.544321
[26]
Shanno,D.F., 1970. Conditioning of quasi-Newton methods for function minimization.Math. Comput., 24(111):647–656. https://doi.org/10.1090/S0025.5718.1970.0274029.X
[27]
Shen,J., Molisch, A.F., Salmi,J. , 2012. Accurate passive location estimation using TOA measurements.IEEE Trans. Wirel. Commun., 11(6):2182–2192. https://doi.org/10.1109/TWC.2012.040412.110697
[28]
Shikur,B.Y., Weber, T., 2014. Localization in NLOS environments using TOA, AOD, and Doppler-shift.11th Workshop on Positioning, Navigation and Communication, p.1-6. https://doi.org/10.1109/WPNC.2014.6843297
[29]
Vandenberghe,L., Boyd, S., 1998. Semidefinite programming.SIAM Rev., 38(1):49–95. https://doi.org/10.1137/1038003
[30]
Wang,G., Chen,H., 2011. An importance sampling method for TDOA-based source localization.IEEE Trans. Wirel. Commun., 10(5):1560–1568. https://doi.org/10.1109/TWC.2011.030311.101011
[31]
Wang,H., Kay,S., 2010. Maximum likelihood angle-Doppler estimator using importance sampling.IEEE Trans. Aerosp. Electron. Syst., 46(2):610–622. https://doi.org/10.1109/TAES.2010.5461644
[32]
Wang,H., Kay,S., Saha,S., 2008. An importance sampling maximum likelihood direction of arrival estimator.IEEE Trans. Signal Process., 56(10):5082–5092. https://doi.org/10.1109/TSP.2008.928504
[33]
Wang,Y., Wu,Y., 2015. An improved direct position determination algorithm with combined time delay and Doppler.J. Xi’an Jiaotong Univ., 49(4):123–129. https://doi.org/10.7652/xjtuxb201504020
[34]
Wang,Y., Wu,Y., 2016. An efficient semidefinite relaxation algorithm for moving source localization using TDOA and FDOA measurements.IEEE Commun. Lett., 21(1): 80–83. https://doi.org/10.1109/LCOMM.2016.2614936
[35]
Weiss,A.J., 2003. On the accuracy of a cellular location system based on RSS measurements.IEEE Trans. Veh. Technol., 52(6):1508–1518. https://doi.org/10.1109/TVT.2003.819613
[36]
Xia,Z., Wang,X., Zhang,L., , 2016. A privacypreserving and copy-deterrence content-based image retrieval scheme in cloud computing.IEEE Trans. Inform. Forens. Secur., 11(11):2594–2608. https://doi.org/10.1109/TSP.2012.2191778
[37]
Yin,J.X., Wu,Y., Wang,D., 2014. On 2-D direction-of-arrival estimation performance for rank reduction estimator in presence of unexpected modeling errors.Circ. Syst. Signal Process., 33(2):515–547. https://doi.org/10.1007/s00034-013-9654-8
[38]
Yin,J.X., Wu,Y., Wang,D., 2016. An auto-calibration method for spatially and temporally correlated noncircular sources in unknown noise fields.Multidimens. Syst. Signal Process., 27(2):1–29. https://doi.org/10.1007/s11045-015-0316-9
[39]
Zhang,W., Zhang, G., 2011. An efficient algorithm for TDOA/FDOA estimation based on approximate coherent accumulative of short-time CAF.Int. Conf. on Wireless Communications and Signal Processing, p.1–4. https://doi.org/10.1109/WCSP.2011.6096807

RIGHTS & PERMISSIONS

2017 Zhejiang University and Springer-Verlag GmbH Germany
PDF(490 KB)

Accesses

Citations

Detail

Sections
Recommended

/