Current trends in the development of intelligent unmanned autonomous systems
Tao ZHANG, Qing LI, Chang-shui ZHANG, Hua-wei LIANG, Ping LI, Tian-miao WANG, Shuo LI, Yun-long ZHU, Cheng WU
Current trends in the development of intelligent unmanned autonomous systems
Intelligent unmanned autonomous systems are some of the most important applications of artificial intelligence (AI). The development of such systems can significantly promote innovation in AI technologies. This paper introduces the trends in the development of intelligent unmanned autonomous systems by summarizing the main achievements in each technological platform. Furthermore, we classify the relevant technologies into seven areas, including AI technologies, unmanned vehicles, unmanned aerial vehicles, service robots, space robots, marine robots, and unmanned workshops/intelligent plants. Current trends and de-velopments in each area are introduced.
Intelligent unmanned autonomous system / Autonomous vehicle / Artificial intelligence / Robotics / Development trend
[1] |
Abadi, M., Agarwal, A., Barham, P.,
|
[2] |
Akin, D.L., Bowden, M.L., 2003. Human-robotic hybrids for deep space EVA: the space construction and orbital utility transport concept. AIAA Space, p.1–11.
|
[3] |
Albu-Schaffer, A., Bertleff, W., Rebele, B.,
|
[4] |
ARC Advisory Group, 2002. Collaborative Manufacturing Management Strategies. https://www.arcweb.com/
|
[5] |
Bacha, A., Bauman, C., Faruque, R.,
|
[6] |
Barkmeyer, E.J., Christopher, N., Feng, S.C.,
|
[7] |
Brockman, G., Cheung, V., Pettersson, L.,
|
[8] |
Canis, B., 2015. Unmanned aircraft systems (UAS): commer-cial outlook for a new industry. Congressional Research Service, 7–5700.
|
[9] |
Chao, H.Y., Cao, Y.C., Chen, Y.Q., 2010. Autopilots for small unmanned aerial vehicles: a survey. Int. J. Contr. Automat. Syst., 8(1):36–44. http://dx.doi.org/10.1007/s12555-010-0105-z
|
[10] |
Chase, M.S., Gunness, K., Morris, L.J.,
|
[11] |
Chetlur, S., Woolley, C., Vandermersch, P.,
|
[12] |
Cusumano, F., Lampariello, R., Hirzinger, G., 2004. Devel-opment of tele-operation control for a free-floating robot during the grasping of a tumbling target. Inte. Conf. on Intelligent Manipulation and Grasping, p.1–6.
|
[13] |
Debus, T.J., Dougherty, S.P., 2009. Overview and perfor-mance of the front-end robotics enabling near-term demonstration (FREND) robotic arm. AIAA Infotech @Aerospace Conf., p.1–12. http://dx.doi.org/10.2514/6.2009-1870
|
[14] |
DIN, 2016. German standardization roadmap industry 4.0, Version 2. http://www.din.de/de
|
[15] |
Fang, Z., Yang, S.C., Jain, S.,
|
[16] |
Feng, W.W., 2013. Intelligent remote control car Anki Drive. Available from http://www.leiphone.com/news/201406/ anki-drive-open.html (in Chinese).
|
[17] |
Flores-Abad, A., Ma, O., Pham, K., 2013. A review of robotics technologies for on-orbit services. ADA576377, Defense Technical Information Center, Fort Belvoir.
|
[18] |
Funahashi, K., Nakamura, Y., 1993. Approximation of dy-namical systems by continuous time recurrent neural networks. Neur. Netw., 6(6):801–806. http://dx.doi.org/10.1016/S0893-6080(05)80125-X
|
[19] |
Girshick, R., 2015. Fast R-CNN. IEEE Int. Conf. on Computer Vision, p.1440–1448. http://dx.doi.org/10.1109/ICCV.2015.169
|
[20] |
Girshick, R., Donahue, J., Darrell, T.,
|
[21] |
Graves, A., Mohamed, A., Hinton, G.E., 2013. Speech recog-nition with deep recurrent neural networks. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.6645–6649. http://dx.doi.org/10.1109/ICASSP.2013.6638947
|
[22] |
Guizzo, E., 2011. How Google’s self-driving car works. IEEE Spectrum Online.
|
[23] |
Gupta, S.G., Ghonge, M.M., Jawandhiya, P.M., 2013. Review of unmanned aircraft system (UAS). Int. J. Adv. Res. Comput. Eng. Technol., 2:1646–1658.
|
[24] |
Harris, S., 2012. Out of the Loop: the human free future of unmanned aerial vehicles. Hoover Institution, Stanford University, USA.
|
[25] |
Heinrich, J., Silver, D., 2016. Deep reinforcement learning from self-play in imperfect information games. arXiv: 1603.01121.
|
[26] |
Hirzinger, G., Brunner, B., Dietrich, J.,
|
[27] |
Hoc, J.M., 2000. From human-machine interaction to human- machine cooperation. Ergonomics, 43(7):833–843. http://dx.doi.org/10.1080/001401300409044
|
[28] |
Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neur. Comput., 9(8):1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735
|
[29] |
Hong, Y.B., Sun, R.C., Lin, R.,
|
[30] |
Hsu, K., Murray, C., Cook, J.,
|
[31] |
Hu, M.H., Liu, J.H., Chen, D.S.,
|
[32] |
Huang, P.S., He, X.D., Gao, J.F.,
|
[33] |
Huang, W.L., Wen, D., Geng, J.,
|
[34] |
Huang, Y., Wu, J., Liu, C.M.,
|
[35] |
Hubel, D.H., Wiesel, T.N., 1962. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol., 160(1):106–154. http://dx.doi.org/10.1113/jphysiol.1962.sp006837
|
[36] |
Jia, Y.Q., Shelhamer, E., Donahue, J.,
|
[37] |
Kandaswamy, I., Xia, T., Kazanzides, P., 2014. Strategies and models for cutting satellite insulation in telerobotic ser-vicing missions. IEEE Haptics Symp., p.467–472. http://dx.doi.org/10.1109/HAPTICS.2014.6775500
|
[38] |
Kendoul, F., 2012. Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot., 29(2):315–378. http://dx.doi.org/10.1002/rob.20414
|
[39] |
Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, p.1097–1105.
|
[40] |
Kuiken, T.A., Li, G.L., Lock, B.A.,
|
[41] |
Landzettel, K., Preusche, C., Albu-Schaffer, A.,
|
[42] |
LeCun, Y., Bengio, Y., 1995. Convolutional networks for images, speech, and time series. In: Arbib, M.A. (Ed.) The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, p.255–258.
|
[43] |
LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Na-ture, 521(7553):436–444. http://dx.doi.org/10.1038/nature14539
|
[44] |
Lillicrap, T.P., Hunt, J.J., Pritzel, A.,
|
[45] |
Long, A.M., Richards, M.G., Hasting, D.E., 2007. On-orbit servicing: a new value proposition for satellite design and operation. J. Spacecr. Rock., 44(4):964–976. http://dx.doi.org/10.2514/1.27117
|
[46] |
Lu, Y., Morris, K.C., Frechette, S., 2016. Current Standards Landscape for Smart Manufacturing Systems. NISTIR 8107, National Institute of Standards and Technology, Gaithersburg.http://dx.doi.org/10.6028/NIST.IR.8107
|
[47] |
Luong, M.T., Pham, H., Manning, C.D., 2015. Effective ap-proaches to attention based neural machine translation. arXiv:1508.04025.
|
[48] |
Ma, L., Xue, J.R., Kawabata, K.,
|
[49] |
Markoff, J., 2010. Google cars drive themselves. New York Times.
|
[50] |
Martinez, R.V., Fish, C.R., Chen, X.,
|
[51] |
Masanori, N., Chikara, H., Yasuo, I.,
|
[52] |
Maza, I., Kondak, K., Bernard, M.,
|
[53] |
Merino, L., Caballero, F., Mart�nez-de Dios, J.R.,
|
[54] |
Mikolov, T., Karafi�t, M., Burget, L.,
|
[55] |
Ministry of Industry and Information Technology of China (MIIT), Standardization Administration of China (SAC), 2015. National Smart Manufacturing Standards Archi-tecture Construction Guidance (in Chinese).
|
[56] |
Mnih, V., Kavukcuoglu, K., Silver, D.,
|
[57] |
Mnih, V., Heess, N., Graves, A.,
|
[58] |
Montemerlo, M., Becker, J., Bhat, S.,
|
[59] |
Nagaty, A., Saeedi, S., Thibault, C.,
|
[60] |
Obermark, J., Creamer, G., Kelm, B.E.,
|
[61] |
Oda, M., Inaba, N., Fukushima, Y., 1999. Space robot tech-nology experiments on NASDA’s ETS-VII satellite. Adv. Robot., 13(6-8):335–336. http://dx.doi.org/10.1163/156855399X01585
|
[62] |
Office of the Secretary of Defense (OSD), 2002. Unmanned aerial vehicles roadmap, 2002-2027. Department of Defense.
|
[63] |
Office of the Secretary of Defense (OSD), 2005. Unmanned aircraft systems roadmap, 2005-2030. Department of Defense.
|
[64] |
Oh, J., Chockalingam, V., Singh, S.,
|
[65] |
O’Shea, T.J., Clancy, T.C., 2016. Deep reinforcement learning radio control and signal detection with KeRLym, a Gym RL agent. arXiv:1605.09221.
|
[66] |
Pan, Y.H., 2016. Heading toward artificial intelligence 2.0. Engineering, 2(4):409–413. http://dx.doi.org/10.1016/J.ENG.2016.04.018
|
[67] |
Preusche, C., Reintsema, D., Landzettel, K.,
|
[68] |
Rathbun, D., Kragelund, S., Pongpunwattana, A.,
|
[69] |
Rebsamen, B., Guan, C.T., Zhang, H.H.,
|
[70] |
Ren, J., Gao, X.G., Zheng, J.S.,
|
[71] |
Ren, S.Q., He, K.M., Girshick, R.,
|
[72] |
Rensink, R.A., 2000. The dynamic representation of scenes. Vis. Cogn., 7(1-3):17–42. http://dx.doi.org/10.1080/135062800394667
|
[73] |
Sak, H., Senior, A., Beaufays, F., 2014. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. INTERSPEECH, p.338–342.
|
[74] |
Sato, N., Wakabayashi, Y., 2001. JEMRMS design features and topics from testing. Proc. 6th Int. Symp. on Artificial Intelligence and Robotics & Automation in Space, p.1–7.
|
[75] |
Settelmeyer, E., Oesterlin, W., Hartmann, R.,
|
[76] |
Shepherd, R.F., Ilievski, F., Choi, W.,
|
[77] |
Shi, H., Liu, X., 2014. Assessment method for autonomous mobility of UGV in a typical battlefield environment. Acta Armament., 35(S1):17–24 (in Chinese).
|
[78] |
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv:1409. 1556.
|
[79] |
Stieber, M.E., McKay, M., Vukovich, G.,
|
[80] |
Sullivan, B.R., Akin, D.L., 2001. A survey of serviceable spacecraft failures. AIAA Space Conf. and Exposition, p.1–8. http://dx.doi.org/10.2514/6.2001-4540
|
[81] |
Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to se-quence learning with neural networks. Advances in Neural Information Processing Systems, p.3104–3112.
|
[82] |
Sutton, R.S., Barto, A.G., 1998. Reinforcement Learning: an Introduction. Volume 1. MIT Press, Cambridge.
|
[83] |
Szegedy, C., Liu, W., Jia, Y.Q.,
|
[84] |
Taylor, L.W., Ramakrishnan, J., 1992. Continuum modeling of the space shuttle remote manipulator system. Proc. IEEE Conf. on Decision and Control, p.626–631. http://dx.doi.org/10.1109/CDC.1992.371660
|
[85] |
Theano Development Team, 2016. Theano: a Python frame-work for fast computation of mathematical expressions. arXiv:1605.02688.
|
[86] |
Tisdale, J., Zuwhan, K., Hedrick, J.K., 2009. Autonomous UAV path planning and estimation. IEEE Robot. Autom. Mag., 16(2):35–42. http://dx.doi.org/10.1109/MRA.2009.932529
|
[87] |
Urmson, C., Anhalt, J., Bagnell, D.,
|
[88] |
Valavanis, K.P., 2007. Introduction. In: Valavanis, K.P. (Ed.), Advances in Unmanned Aerial Vehicles. Springer Neth-erlands, Dordrecht, p.3–13. http://dx.doi.org/10.1007/978-1-4020-6114-1
|
[89] |
Valavanis, K.P., Vachtsevanos, G.J., 2014. Handbook of Unmanned Aerial Vehicles. Springer Publishing Com-pany. http://dx.doi.org/10.1007/978-90-481-9707-1
|
[90] |
van Hasselt, H., Guez, A., Silver, D., 2015. Deep reinforce-ment learning with double q-learning. arXiv:1509.06461.
|
[91] |
Vinyals, O., Toshev, A., Bengio, S.,
|
[92] |
Wang, F.Z., 2016. Google released the product of smart home: Google Home. Available from http://tech.163.com/16/ 0519/01/BND3AHMH000915BD.html (in Chinese).
|
[93] |
Wang, X.H., Yadav, V., Balakrishnan, S.N., 2007. Coopera-tive UAV formation flying with obstacle collision avoidance. IEEE Trans. Contr. Syst. Technol., 15(4):672–679. http://dx.doi.org/10.1109/TCST.2007.899191
|
[94] |
Wikipedia, 2016a. Unmanned aerial vehicle. Available from https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
|
[95] |
Wikipedia, 2016b. Unmanned combat aerial vehicle. Availabel from https://en.wikipedia.org/wiki/Unmanned_combat_ aerial_vehicle
|
[96] |
Wikipedia, 2016c. Human-in-the-loop. Available from https:// en.wikipedia.org/wiki/Human-in-the-loop
|
[97] |
Xu, K., Ba, J., Kiros, R.,
|
[98] |
Yim, M., Shen, W.M., Salemi, B.,
|
[99] |
Zhang, D.D., 2016. America upgraded the death UAV to increase the life time and strengthen operational capabil-ity. Available from http://www.hdzc.net/html/news/gj/ 2016_06/16/16175622.html (in Chinese).
|
[100] |
Zhao, P., Chen, J.J., Song, Y.,
|
[101] |
Zimpfer, D., Spehar, P., 1996. STS-71 Shuttle/Mir GNC mis-sion overview. Adv. Astronaut. Sci., 93:441–460.
|
/
〈 | 〉 |