Computational methods in super-resolution microscopy
Zhi-ping ZENG, Hao XIE, Long CHEN, Karl ZHANGHAO, Kun ZHAO, Xu-san YANG, Peng XI
Computational methods in super-resolution microscopy
The broad applicability of super-resolution microscopy has beenwidely demonstrated in various areas and disciplines. The optimizationand improvement of algorithms used in super-resolution microscopyare of great importance for achieving optimal quality of super-resolutionimaging. In this review, we comprehensively discuss the computationalmethods in different types of super-resolution microscopy, includingdeconvolution microscopy, polarization-based super-resolution microscopy,structured illumination microscopy, image scanning microscopy, super-resolutionoptical fluctuation imaging microscopy, single-molecule localizationmicroscopy, Bayesian super-resolution microscopy, stimulated emissiondepletion microscopy, and translation microscopy. The developmentof novel computational methods would greatly benefit super-resolutionmicroscopy and lead to better resolution, improved accuracy, and fasterimage processing.
Super-resolution microscopy / Deconvolution / Computational methods
[1] |
Agard, D.A., Hiraoka, Y., Sedat, J.W., 1989. Threedimensionalmicroscopy: image processing for high resolution subcellular imaging. 33rd Annual Technical Symp., p.24–30. https://doi.org/10.1117/12.962684
|
[2] |
Axelrod, D., 1989. Fluorescence polarization microscopy. Methods Cell Biol., 30:333–352. https://doi.org/10.1016/S0091-679X(08)60985-1
|
[3] |
Beck, A., Teboulle, M., 2009. A fast iterative shrinkagethresholding algorithm forlinear inverse problems. SIAM J. Imag. Sci., 2(1):183–202. https://doi.org/10.1137/080716542
|
[4] |
Betzig, E., Patterson, G.H., Sougrat, R.,
|
[5] |
Biggs, D.S., 2010. 3D deconvolution microscopy. Curr. Protoc. Cytom., 52:12.19.1–12.19.20. https://doi.org/10.1002/0471142956.cy1219s52
|
[6] |
Broxton, M., Grosenick, L., Yang, S.,
|
[7] |
Chen, X., Wei, M., Zheng, M.M.,
|
[8] |
Cox, S., Rosten, E., Monypenny, J.,
|
[9] |
DeMay, B.S., Noda, N., Gladfelter, A.S.,
|
[10] |
Dertinger, T., Colyer, R., Iyer, G.,
|
[11] |
Dertinger, T., Pallaoro, A., Braun, G.,
|
[12] |
Ding, Y., Xi, P., Ren, Q., 2011. Hacking the opticaldiffraction limit: review on recent developments of fluorescence nanoscopy. Chin. Sci. Bull., 56(18):1857–1876. https://doi.org/10.1007/s11434-011-4502-3
|
[13] |
Dong, S., Liao, J., Guo, K.,
|
[14] |
Falk, M.M., Lauf, U., 2001. High resolution, fluorescence deconvolution microscopy and taggingwith the autofluorescent tracers CFP, GFP, and YFP to study the structuralcomposition of gap junctions in living cells. Microsc. Res. Techn., 52(3):251–262.
|
[15] |
Gao, J., Yang, X., Djekidel, M.N.,
|
[16] |
Geissbuehler, S., Bocchio, N.L., Dellagiacoma, C.,
|
[17] |
Gold, R., 1964. An Iterative Unfolding Method forResponse Matrices. Argonne National Lab,Lemont, USA.
|
[18] |
Gonzalez, R.C., Woods, R.E., 2008. Digital Image Processing. Pearson Education, New York, USA.
|
[19] |
Gu, M., Li, X., Cao, Y., 2014. Optical storage arrays:a perspective for future big data storage. Light Sci. Appl., 3(5):e177. https://doi.org/10.1038/lsa.2014.58
|
[20] |
Gustafsson, M.G., 2000. Surpassing the lateralresolution limit by a factor of two using structured illuminationmicroscopy. J. Microsc., 198(2):82–87. https://doi.org/10.1046/j.1365-2818.2000.00710.x
|
[21] |
Gustafsson, M.G., Shao, L., Carlton, P.M.,
|
[22] |
Hafi, N., Grunwald, M., van den Heuvel, L.S.,
|
[23] |
Hao, X., Kuang, C., Gu, Z.,
|
[24] |
Hell, S.W., Wichmann, J., 1994. Breaking the diffraction resolution limit by stimulatedemission: stimulatedemission-depletion fluorescence microscopy. Opt. Lett., 19(11):780–782. https://doi.org/10.1364/OL.19.000780
|
[25] |
Hess, S.T., Girirajan, T.P., Mason, M.D., 2006. Ultra-highresolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91(11):4258–4272. https://doi.org/10.1529/biophysj.106.091116
|
[26] |
Hu, Y.S., Nan, X., Sengupta, P.,
|
[27] |
Hu, Y.S., Zhu, Q., Elkins, K.,
|
[28] |
Huang, B., Babcock, H., Zhuang, X., 2010. Breakingthe diffraction barrier: super-resolution imaging of cells. Cell, 143(7):1047–1058. https://doi.org/10.1016/j.cell.2010.12.002
|
[29] |
Ingaramo, M., York, A.G., Wawrzusin, P.,
|
[30] |
Jansson, P.A., 2014. Deconvolution of Images and Spectra. Courier Corporation, North Chelmsford, USA.
|
[31] |
Klar, T.A., Jakobs, S., Dyba, M.,
|
[32] |
Lal, A., Shan, C., Xi, P., 2016. Structured illuminationmicroscopy image reconstruction algorithm. IEEE J. Sel. Topics Quant. Electron., 22(4):1–14. https://doi.org/10.1109/JSTQE.2016.2521542
|
[33] |
Lazar, J., Bondar, A., Timr, S.,
|
[34] |
Li, D., Shao, L., Chen, B.C.,
|
[35] |
Liu, Y., Ding, Y., Alonas, E.,
|
[36] |
McNally, J.G., Karpova, T., Cooper, J.,
|
[37] |
Mertz, J., 2011. Optical sectioning microscopy withplanar or structured illumination. Nat. Methods, 8(10):811–819.
|
[38] |
Müller, C.B., Enderlein, J., 2010. Image scanning microscopy. Phys. Rev. Lett., 104(19):198101. https://doi.org/10.1103/PhysRevLett.104.198101
|
[39] |
Orieux, F., Sepulveda, E., Loriette, V.,
|
[40] |
Pawley, J.B., 2010. Handbook of Biological Confocal Microscopy. Springer, New York.
|
[41] |
Qiu, Z., Wilson, R.S., Liu, Y.,
|
[42] |
Rizzo, M.A., Piston, D.W., 2005. High-contrast imaging of fluorescent protein FRET byfluorescence polarization microscopy. Biophys. J., 88(2):L14–L16. https://doi.org/10.1529/biophysj.104.055442
|
[43] |
Rust, M.J., Bates, M., Zhuang, X., 2006. Sub-diffraction-limitimaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3(10):793–796.
|
[44] |
Schoonderwoert, V., Dijkstra, R., Luckinavicius, G.,
|
[45] |
Schulz, O., Pieper, C., Clever, M.,
|
[46] |
Sheppard, C.J., Mehta, S.B., Heintzmann, R., 2013. Superresolutionby image scanning microscopy using pixel reassignment. Opt. Lett., 38(15):2889–2892. https://doi.org/10.1364/OL.38.002889
|
[47] |
Sibarita, J.B., 2005. Deconvolution microscopy. In: Microscopy Techniques. Springer-Verlag, Berlin. https://doi.org/10.1007/b102215
|
[48] |
Vrabioiu, A.M., Mitchison, T.J., 2006. Structural insights into yeast septin organization frompolarized fluorescence microscopy. Nature, 443(7110):466-469. https://doi.org/10.1038/nature05109
|
[49] |
Yang, Q., Cao, L., Zhang, H.,
|
[50] |
Yang, X., Xie, H., Alonas, E.,
|
[51] |
Yang, X., Zhanghao, K., Wang, H.,
|
[52] |
Yassif, J., 2012. Quantitative Imaging in Cell Biology. Academic Press, Cambridge, USA.
|
[53] |
Yu, W., Ji, Z., Dong, D.,
|
[54] |
Zeng, Z., Chen, X., Wang, H.,
|
[55] |
Zhang, X., Chen, X., Zeng, Z.,
|
[56] |
Zhanghao, K., Chen, L., Wang, M.Y.,
|
[57] |
Zhou, X., Lei, M., Dan, D.,
|
/
〈 | 〉 |