Computational methods in super-resolution microscopy

Zhi-ping ZENG, Hao XIE, Long CHEN, Karl ZHANGHAO, Kun ZHAO, Xu-san YANG, Peng XI

PDF(1829 KB)
PDF(1829 KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (9) : 1222-1235. DOI: 10.1631/FITEE.1601628
Review
Review

Computational methods in super-resolution microscopy

Author information +
History +

Abstract

The broad applicability of super-resolution microscopy has beenwidely demonstrated in various areas and disciplines. The optimizationand improvement of algorithms used in super-resolution microscopyare of great importance for achieving optimal quality of super-resolutionimaging. In this review, we comprehensively discuss the computationalmethods in different types of super-resolution microscopy, includingdeconvolution microscopy, polarization-based super-resolution microscopy,structured illumination microscopy, image scanning microscopy, super-resolutionoptical fluctuation imaging microscopy, single-molecule localizationmicroscopy, Bayesian super-resolution microscopy, stimulated emissiondepletion microscopy, and translation microscopy. The developmentof novel computational methods would greatly benefit super-resolutionmicroscopy and lead to better resolution, improved accuracy, and fasterimage processing.

Keywords

Super-resolution microscopy / Deconvolution / Computational methods

Cite this article

Download citation ▾
Zhi-ping ZENG, Hao XIE, Long CHEN, Karl ZHANGHAO, Kun ZHAO, Xu-san YANG, Peng XI. Computational methods in super-resolution microscopy. Front. Inform. Technol. Electron. Eng, 2017, 18(9): 1222‒1235 https://doi.org/10.1631/FITEE.1601628

References

[1]
Agard, D.A., Hiraoka, Y., Sedat, J.W., 1989. Threedimensionalmicroscopy: image processing for high resolution subcellular imaging. 33rd Annual Technical Symp., p.24–30. https://doi.org/10.1117/12.962684
[2]
Axelrod, D., 1989. Fluorescence polarization microscopy. Methods Cell Biol., 30:333–352. https://doi.org/10.1016/S0091-679X(08)60985-1
[3]
Beck, A., Teboulle, M., 2009. A fast iterative shrinkagethresholding algorithm forlinear inverse problems. SIAM J. Imag. Sci., 2(1):183–202. https://doi.org/10.1137/080716542
[4]
Betzig, E., Patterson, G.H., Sougrat, R., , 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793):1642–1645. https://doi.org/10.1126/science.1127344
[5]
Biggs, D.S., 2010. 3D deconvolution microscopy. Curr. Protoc. Cytom., 52:12.19.1–12.19.20. https://doi.org/10.1002/0471142956.cy1219s52
[6]
Broxton, M., Grosenick, L., Yang, S., , 2013. Wave optics theory and 3-D deconvolution for the light field microscope. Opt. Expr., 21(21):25418–25439. https://doi.org/10.1364/OE.21.025418
[7]
Chen, X., Wei, M., Zheng, M.M., , 2016. Study ofRNA polymerase II clustering inside live-cell nuclei using Bayesiannanoscopy. ACSNano, 10(2):2447–2454. https://doi.org/10.1021/acsnano.5b07257
[8]
Cox, S., Rosten, E., Monypenny, J., , 2012. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat. Methods, 9(2):195–200. https://doi.org/10.1038/nmeth.1812
[9]
DeMay, B.S., Noda, N., Gladfelter, A.S., , 2011. Rapid and quantitative imaging of excitation polarized gluorescencereveals ordered septin dynamics in live yeast. Biophys. J., 101(4):985–994.
[10]
Dertinger, T., Colyer, R., Iyer, G., , 2009. Fast, background-free, 3D super-resolution optical fluctuation imaging(SOFI). PNAS, 106(52):22287–22292. https://doi.org/10.1073/pnas.0907866106
[11]
Dertinger, T., Pallaoro, A., Braun, G., , 2013. Advances in superresolution optical fluctuation imaging (SOFI). Q. Rev. Biophys., 46(2):210–221. https://doi.org/10.1017/S0033583513000036
[12]
Ding, Y., Xi, P., Ren, Q., 2011. Hacking the opticaldiffraction limit: review on recent developments of fluorescence nanoscopy. Chin. Sci. Bull., 56(18):1857–1876. https://doi.org/10.1007/s11434-011-4502-3
[13]
Dong, S., Liao, J., Guo, K., , 2015. Resolutiondoubling with a reduced number of image acquisitions. Biomed. Opt. Expr., 6(8):2946–2952. https://doi.org/10.1364/BOE.6.002946
[14]
Falk, M.M., Lauf, U., 2001. High resolution, fluorescence deconvolution microscopy and taggingwith the autofluorescent tracers CFP, GFP, and YFP to study the structuralcomposition of gap junctions in living cells. Microsc. Res. Techn., 52(3):251–262.
[15]
Gao, J., Yang, X., Djekidel, M.N., , 2016. Developing bioimaging and quantitative methods to study 3D genome. Quant. Biol., 4(2):129–147. https://doi.org/10.1007/s40484-016-0065-2
[16]
Geissbuehler, S., Bocchio, N.L., Dellagiacoma, C., , 2012. Mapping molecular statistics with balanced superresolution opticalfluctuation imaging (bSOFI). Opt. Nanosc., 1(1):1–7. https://doi.org/10.1186/2192-2853-1-4
[17]
Gold, R., 1964. An Iterative Unfolding Method forResponse Matrices. Argonne National Lab,Lemont, USA.
[18]
Gonzalez, R.C., Woods, R.E., 2008. Digital Image Processing. Pearson Education, New York, USA.
[19]
Gu, M., Li, X., Cao, Y., 2014. Optical storage arrays:a perspective for future big data storage. Light Sci. Appl., 3(5):e177. https://doi.org/10.1038/lsa.2014.58
[20]
Gustafsson, M.G., 2000. Surpassing the lateralresolution limit by a factor of two using structured illuminationmicroscopy. J. Microsc., 198(2):82–87. https://doi.org/10.1046/j.1365-2818.2000.00710.x
[21]
Gustafsson, M.G., Shao, L., Carlton, P.M., , 2008. Three-dimensional resolution doubling in wide-field fluorescencemicroscopy by structured illumination. Biophys. J., 94(12):4957–4970. https://doi.org/10.1529/biophysj.107.120345
[22]
Hafi, N., Grunwald, M., van den Heuvel, L.S., , 2014. Fluorescence nanoscopy by polarization modulation and polarizationangle narrowing. Nat. Methods, 11(5):579–584.
[23]
Hao, X., Kuang, C., Gu, Z., , 2013. From microscopyto nanoscopy via visible light. Light Sci. Appl., 2:e108. https://doi.org/10.1038/lsa.2013.64
[24]
Hell, S.W., Wichmann, J., 1994. Breaking the diffraction resolution limit by stimulatedemission: stimulatedemission-depletion fluorescence microscopy. Opt. Lett., 19(11):780–782. https://doi.org/10.1364/OL.19.000780
[25]
Hess, S.T., Girirajan, T.P., Mason, M.D., 2006. Ultra-highresolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91(11):4258–4272. https://doi.org/10.1529/biophysj.106.091116
[26]
Hu, Y.S., Nan, X., Sengupta, P., , 2013a. Accelerating 3B single-molecule super-resolution microscopy withcloud computing. Nat. Methods, 10(2):96–97.
[27]
Hu, Y.S., Zhu, Q., Elkins, K., , 2013b. Light-sheetBayesian microscopy enables deep-cell super-resolution imaging ofheterochromatin in live human embryonic stem cells. Opt. Nanosc., 2(1):7. https://doi.org/10.1186/2192-2853-2-7
[28]
Huang, B., Babcock, H., Zhuang, X., 2010. Breakingthe diffraction barrier: super-resolution imaging of cells. Cell, 143(7):1047–1058. https://doi.org/10.1016/j.cell.2010.12.002
[29]
Ingaramo, M., York, A.G., Wawrzusin, P., , 2014. Twophoton excitation improves multifocal structured illuminationmicroscopy in thick scattering tissue. PNAS, 111(14):5254–5259. https://doi.org/10.1073/pnas.1314447111
[30]
Jansson, P.A., 2014. Deconvolution of Images and Spectra. Courier Corporation, North Chelmsford, USA.
[31]
Klar, T.A., Jakobs, S., Dyba, M., , 2000. Fluorescence microscopy with diffraction resolution barrier brokenby stimulated emission. PNAS, 97(15):8206. https://doi.org/10.1073/pnas.97.15.8206
[32]
Lal, A., Shan, C., Xi, P., 2016. Structured illuminationmicroscopy image reconstruction algorithm. IEEE J. Sel. Topics Quant. Electron., 22(4):1–14. https://doi.org/10.1109/JSTQE.2016.2521542
[33]
Lazar, J., Bondar, A., Timr, S., , 2011. Two-photon polarization microscopy reveals protein structure andfunction. Nat.Methods, 8(8):684–690.
[34]
Li, D., Shao, L., Chen, B.C., , 2015. Extended-resolutionstructured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349(6251):aab3500. https://doi.org/10.1126/science.aab3500
[35]
Liu, Y., Ding, Y., Alonas, E., , 2012. Achievingλ/10 resolution CW STED nanoscopy with a Ti: sapphire oscillator. PLOS ONE, 7(6):e40003. https://doi.org/10.1371/journal.pone.0040003
[36]
McNally, J.G., Karpova, T., Cooper, J., , 1999. Three dimensional imaging by deconvolution microscopy. Methods, 19(3):373–385. https://doi.org/10.1006/meth.1999.0873
[37]
Mertz, J., 2011. Optical sectioning microscopy withplanar or structured illumination. Nat. Methods, 8(10):811–819.
[38]
Müller, C.B., Enderlein, J., 2010. Image scanning microscopy. Phys. Rev. Lett., 104(19):198101. https://doi.org/10.1103/PhysRevLett.104.198101
[39]
Orieux, F., Sepulveda, E., Loriette, V., , 2012. Bayesian estimation for optimized structured illumination microscopy. IEEE Trans. Image Process., 21(2):601–614. https://doi.org/10.1109/TIP.2011.2162741
[40]
Pawley, J.B., 2010. Handbook of Biological Confocal Microscopy. Springer, New York.
[41]
Qiu, Z., Wilson, R.S., Liu, Y., , 2016. Translation microscopy (TRAM) for super-resolution imaging. Sci. Rep., 6:19993. https://doi.org/10.1038/srep19993
[42]
Rizzo, M.A., Piston, D.W., 2005. High-contrast imaging of fluorescent protein FRET byfluorescence polarization microscopy. Biophys. J., 88(2):L14–L16. https://doi.org/10.1529/biophysj.104.055442
[43]
Rust, M.J., Bates, M., Zhuang, X., 2006. Sub-diffraction-limitimaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3(10):793–796.
[44]
Schoonderwoert, V., Dijkstra, R., Luckinavicius, G., , 2013. Huygens STED deconvolution increases signal-tonoise and image resolutiontowards 22 nm. Microsc. Today, 21(6):38–44. https://doi.org/10.1017/S1551929513001089
[45]
Schulz, O., Pieper, C., Clever, M., , 2013. Resolution doubling in fluorescence microscopy with confocal spinning-diskimage scanning microscopy. PNAS, 110(52): 21000–21005. https://doi.org/10.1073/pnas.1315858110
[46]
Sheppard, C.J., Mehta, S.B., Heintzmann, R., 2013. Superresolutionby image scanning microscopy using pixel reassignment. Opt. Lett., 38(15):2889–2892. https://doi.org/10.1364/OL.38.002889
[47]
Sibarita, J.B., 2005. Deconvolution microscopy. In: Microscopy Techniques. Springer-Verlag, Berlin. https://doi.org/10.1007/b102215
[48]
Vrabioiu, A.M., Mitchison, T.J., 2006. Structural insights into yeast septin organization frompolarized fluorescence microscopy. Nature, 443(7110):466-469. https://doi.org/10.1038/nature05109
[49]
Yang, Q., Cao, L., Zhang, H., , 2015. Method oflateral image reconstruction in structured illumination microscopywith super resolution. J. Innov. Opt. Health Sci., 9(3):1630002. https://doi.org/10.1142/S1793545816300020
[50]
Yang, X., Xie, H., Alonas, E., , 2016a. Mirror-enhancedsuper-resolution microscopy. Light Sci. Appl., 5(6): e16134. https://doi.org/10.1038/lsa.2016.134
[51]
Yang, X., Zhanghao, K., Wang, H., , 2016b. Versatile application of fluorescent quantum dot labels in superresolutionfluorescence microscopy. ACS Photon., 3(9): 1611–1618. https://doi.org/10.1021/acsphotonics.6b00178
[52]
Yassif, J., 2012. Quantitative Imaging in Cell Biology. Academic Press, Cambridge, USA.
[53]
Yu, W., Ji, Z., Dong, D., , 2016. Super-resolutiondeep imaging with hollow Bessel beam STED microscopy. Laser Photon. Rev., 10(1):147–152. https://doi.org/10.1002/lpor.201500151
[54]
Zeng, Z., Chen, X., Wang, H., , 2015. Fast superresolutionimaging with ultra-high labeling density achieved by joint taggingsuper-resolution optical fluctuation imaging. Sci. Rep., 5:8359. https://doi.org/10.1038/srep08359
[55]
Zhang, X., Chen, X., Zeng, Z., , 2015. Developmentof a reversibly switchable fluorescent protein for superresolutionoptical fluctuation imaging (SOFI). ACS Nano, 9(3):2659–2667. https://doi.org/10.1021/nn5064387
[56]
Zhanghao, K., Chen, L., Wang, M.Y., , 2016. Superresolutiondipole orientation mapping via polarization demodulation. Light Sci. Appl., 5(10):e16166. https://doi.org/10.1038/lsa.2016.166
[57]
Zhou, X., Lei, M., Dan, D., , 2016. Image recombinationtransform algorithm for superresolution structured illumination microscopy. J. Biomed. Opt., 21(9):96009. https://doi.org/10.1117/1.JBO.21.9.096009

RIGHTS & PERMISSIONS

2017 Zhejiang University and Springer-Verlag GmbHGermany
PDF(1829 KB)

Accesses

Citations

Detail

Sections
Recommended

/