Simulationmodel of self-organizing pedestrianmovement considering following behavior
Zhilu YUAN, Hongfei JIA, Mingjun LIAO, Linfeng ZHANG, Yixiong FENG, Guangdong TIAN
Simulationmodel of self-organizing pedestrianmovement considering following behavior
A new force is introduced in the social force model (SFM) for computing following behavior in pedestrian counterflow, whereby an individual tries to approach others in the same direction to avoid conflicts with pedestrians from the opposite direction. The force, like a kind of gravitation, is modeled based on the movement state and visual field of the pedestrian, and is added to the classical SFM. The modified model is presented to study the impact of following behavior on the process of lane formation, the conflict, the number of lanes formed, and the traffic efficiency in the simulations. Simulation results show that the following behavior has a significant effect on the phenomenon of lane formation and the traffic efficiency.
Gravitation / Pedestrian counterflow / Social force model (SFM) / Lane formation / Self-organizing
[1] |
Chen,M.J., Bärwolff, G., Schwandt,H. , 2009. A derived grid-based model for simulation of pedestrian flow. J. Zhejiang Univ.-Sci. A, 10(2):209–220. https://doi.org/10.1631/jzus.A0820049
|
[2] |
Fujiyama,T., Tyler,N., 2009. Bidirectional collisionavoidance behaviour of pedestrians on stairs. Environ. Plan. B, 36(1):128–148. https://doi.org/10.1068/b33123
|
[3] |
Guo,R.Y., 2014. Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck. Phys. A, 415:428–439. https://doi.org/10.1016/j.physa.2014.08.036
|
[4] |
Helbing,D., 1996. A stochastic behavioral model and a‘microscopic’ foundation of evolutionary game theory. Theory Dec., 40(2):149–179. https://doi.org/10.1007/BF00133171
|
[5] |
Helbing,D., 2001. Traffic and related self-driven manyparticle systems. Rev. Mod. Phys., 73(4):1067. https://doi.org/10.1103/RevModPhys.73.1067
|
[6] |
Helbing,D., Moln�r, P., 1995. Social force model for pedestrian dynamics. Phys. Rev. E, 51(5):4282. https://doi.org/10.1103/PhysRevE.51.4282
|
[7] |
Helbing,D., Farkas, I., Vicsek,T. , 2000. Simulating dynamical features of escape panic. Nature, 407(6803):487–490. https://doi.org/10.1038/35035023
|
[8] |
Helbing,D., Farkas, I.J., Molnár,P. ,
|
[9] |
Helbing,D., Buzna,L., Johansson,A. ,
|
[10] |
Heliövaara,S., Korhonen, T., Hostikka,S. ,
|
[11] |
Iryo-Asano,M., Alhajyaseen, W.K.M., Nakamura,H. , 2015. Analysis and modeling of pedestrian crossing behavior during the pedestrian flashing green interval. IEEE Trans. Intell. Transp. Syst., 16(2):958–969.https://doi.org/10.1109/TITS.2014.2346154
|
[12] |
Jia,H.F., Li,Y.X., Yang,L.L.,
|
[13] |
Kuang,H., Li,X.L., Wei,Y.F.,
|
[14] |
Lakoba,T.I., Kaup,D.J., Finkelstein,N.M. , 2005. Modifications of the Helbing-Molnár-Farkas-Vicsek social force model for pedestrian evolution. Simulation, 81(5):339–352. https://doi.org/10.1177/0037549705052772
|
[15] |
Lam,W.H.K., Lee,J.Y.S., Cheung,C.Y. , 2002. A study of the bi-directional pedestrian flow characteristics at Hong Kong signalized crosswalk facilities. Transportation, 29(2):169–192. https://doi.org/10.1023/A:1014226416702
|
[16] |
Li,J., Yang,L., Zhao,D., 2005. Simulation of bi-direction pedestrian movement in corridor. Phys. A, 354:619–628. https://doi.org/10.1016/j.physa.2005.03.007
|
[17] |
Li,J., Wang,J., Dong,Y.,
|
[18] |
Li,Y.X., Jia,H.F., Zhou,Y.N.,
|
[19] |
Liao,M.J., Liu,G., 2015. Modeling passenger behavior in nonpayment areas at rail transit stations. Transp. Res. Rec. J. Transp. Res. Board, 2534:101–108. https://doi.org/10.3141/2534-13
|
[20] |
Löhner,R., 2010. On the modeling of pedestrian motion. Appl. Math. Model., 34(2):366–382. https://doi.org/10.1016/j.apm.2009.04.017
|
[21] |
Ma,J., Song,W.G., Zhang,J.,
|
[22] |
Older,S.J., 1968. Movement of pedestrians on footways in shopping streets. Traff. Eng. Contr., 10(4):160–163.
|
[23] |
Pelechano,N., Allbeck, J.M., Badler,N.I. , 2007. Controlling individual agents in high-density crowd simulation. Proc. ACM SIGGRAPH/Eurographics Symp. on Computer Animation, p.99–108. https://doi.org/10.2312/SCA/SCA07/099-108
|
[24] |
Saloma,C., Perez,G.J., Tapang,G.,
|
[25] |
Seyfried,A., Steffen, B., Klingsch,W. ,
|
[26] |
Smith,A., James,C., Jones,R.,
|
[27] |
Tajima,Y., Takimoto, K., Nagatani,T. , 2002. Pattern formation and jamming transition in pedestrian counter flow. Phys. A, 313(3):709–723. https://doi.org/10.1016/S0378-4371(02)00965-2
|
[28] |
Tang,T.Q., Shao,Y.X., Chen,L., 2017. Modeling pedestrian movement at the hall of high-speed railway station during the check-in process. Phys. A, 467:157–166. https://doi.org/10.1016/j.physa.2016.10.008
|
[29] |
Wang,Z., Ma,J., Zhao,H.,
|
[30] |
Weidmann,U., 1993. Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs (Literaturauswertung). ETH Zürich (in German). https://doi.org/10.3929/ethz-a-000687810
|
[31] |
Weng,W.G., Chen,T., Yuan,H.Y.,
|
[32] |
Werner,T., Helbing, D., 2003. The social force pedestrian model applied to real life scenarios. Proc. 2nd Int. Conf. on Pedestrian and Evacuation Dynamics, p.17–26.
|
[33] |
Yang,L., Li,J., Liu,S., 2008. Simulation of pedestrian counter-flow with right-moving preference. Phys. A, 387(13):3281–3289. https://doi.org/10.1016/j.physa.2008.01.107
|
[34] |
Yue,H., Guan,H., Zhang,J.,
|
[35] |
Zhang,J., Wang,H., Li,P., 2004. Cellular automata modeling of pedestrian’s crossing dynamics. J. Zhejiang Univ.-Sci., 5(7):835–840. https://doi.org/10.1631/jzus.2004.0835
|
/
〈 | 〉 |