A survey on run-time supporting platforms for cyber physical systems

Yuan SUN, Gang YANG, Xing-she ZHOU

PDF(715 KB)
PDF(715 KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (10) : 1458-1478. DOI: 10.1631/FITEE.1601579
Review
Review

A survey on run-time supporting platforms for cyber physical systems

Author information +
History +

Abstract

Cyber physical systems (CPSs) incorporate computation, communication, and physical processes. The deep coupling and continuous interaction between such processes lead to a significant increase in complexity in the design and implementation of CPSs. Consequently, whereas developing CPSs from scratch is inefficient, developing them with the aid of CPS run-time sup-porting platforms can be efficient. In recent years, much research has been actively conducted on CPS run-time supporting plat-forms. However, few surveys have been conducted on these platforms. In this paper, we analyze and evaluate existing CPS run-time supporting platforms by first classifying them into three categories from the viewpoint of software architecture: com-ponent-based platforms, service-based platforms, and agent-based platforms. Then, for each type, we detail its design philosophy, key technical problems, and corresponding solutions with specific use cases. Subsequently, we compare existing platforms from two aspects: construction approaches for CPS tasks and support for non-functional properties. Finally, we outline several im-portant future research issues.

Keywords

Cyber physical system (CPS) / Run-time supporting platforms / Component / Service / Agent

Cite this article

Download citation ▾
Yuan SUN, Gang YANG, Xing-she ZHOU. A survey on run-time supporting platforms for cyber physical systems. Front. Inform. Technol. Electron. Eng, 2017, 18(10): 1458‒1478 https://doi.org/10.1631/FITEE.1601579

References

[1]
Acosta , F.J., Weis , F., Bourcier , J., 2014. Towards a Mod-el@Runtime middleware for cyber physical systems. Proc. 9th Workshop on Middleware for Next Generation Internet Computing, Article 6. https://doi.org/10.1145/2676733.2676741
[2]
Afanasov , M., Mottola , L., Ghezzi , C., 2014. Towards context-oriented self-adaptation in resource-constrained cyberphysical systems. Proc. IEEE 38th Annual Int. Computers, Software and Applications Conf. Workshops, p.372–377. https://doi.org/10.1109/COMPSACW.2014.64
[3]
Ahmadi , H., Abdelzaher , T.F., Gupta , I., 2010. Congestion control for spatio-temporal data in cyber-physical sys-tems. Proc. 1st ACM/IEEE Int. Conf. on Cyber-Physical Systems, p.89–98. https://doi.org/10.1145/1795194.1795207
[4]
Aiello , M., Frankova , G., Malfatti , D., 2005. What’s in an agreement? An analysis and an extension of WS- agreement.In: Benatallah, B., Casati, F., Traverso, P. (Eds.), Service-Oriented Computing-ICSOC 2005. Springer-Verlag Berlin Heidelberg, p.424–436. https://doi.org/10.1007/11596141_32
[5]
Al-Safi , Y., Vyatkin , V., 2007. An ontology-based reconfigu-ration agent for intelligent mechatronic systems.In: Mařík, V., Vyatkin, V., Colombo, A.W. (Eds.), Holonic and Multi-agent Systems for Manufacturing. Springer- Verlag Berlin Heidelberg, p.114–126. https://doi.org/10.1007/978-3-540-74481-8_12
[6]
Andersson , B., Pereira , N., Tovar , E., 2008. How a cyber- physical system can efficiently obtain a snapshot of physical information even in the presence of sensor faults. Proc. Int. Workshop on Intelligent Solutions in Embed-ded Systems, p.1–10. https://doi.org/10.1109/WISES.2008.4623298
[7]
Asadollah , S.A., Inam , R., Hansson , H., 2015. A survey on testing for cyber physical system.In: El-Fakih, K., Barlas, G., Yevtushenko, N. (Eds.), Testing Software and Sys-tems. Springer International Publishing, Cham, Switzer-land, p.194–207. https://doi.org/10.1007/978-3-319-25945-1_12
[8]
AUTOSAR, 2014. AUTomotive Open System ARchitecture (AUTOSAR).http://www.autosar.org/about/technical- overview/ [Accessed on Nov. 20, 2016].
[9]
Axelsson , J., Kobetski , A., 2014. Architectural concepts for federated embedded systems. Proc. European Conf. on Software Architecture Workshops, p.25:1–25:8. https://doi.org/10.1145/2642803.2647716
[10]
Barbosa , J., Leitão , P., Adam , E., , 2015. Dynamic self-organization in holonic multi-agent manufacturing systems: the ADACOR evolution. Comput. Ind. , 66:99–111. https://doi.org/10.1016/j.compind.2014.10.011
[11]
Bellifemine , F., Caire , G., Poggi , A., , 2008. JADE: a software framework for developing multi-agent applica-tions: lessons learned. Inform. Softw. Technol. , 50(1): 10–21. https://doi.org/10.1016/j.infsof.2007.10.008
[12]
Broy , M., 2013. Cyber-physical systems: concepts, challenges and foundations.https://artemis-ia.eu/publication/down load/877-magazine-14.pdf [Accessed on Nov. 20, 2016].
[13]
Bruneton , E., Coupaye , T., Leclercq , M., , 2006. The FRACTAL component model and its support in Java. Softw. Pract. Exp. , 36(11-12):1257–1284. https://doi.org/10.1002/spe.767
[14]
Bures , T., Gerostathopoulos , I., Hnetynka , P., , 2013. DEECO: an ensemble-based component system. Proc. 16th ACM Sigsoft Symp. on Component-Based Software Engineering, p.81–90. https://doi.org/10.1145/2465449.2465462
[15]
Bures , T., Gerostathopoulos , I., Hnetynka , P., , 2014. Gossiping components for cyber-physical systems.In: Avgeriou, P., Zdun, U. (Eds.), Software Architecture. Springer International Publishing, Cham, Switzerland, p.250–266. https://doi.org/10.1007/978-3-319-09970-5_23
[16]
Buttazzo , G., 2011. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications. Springer US, New York, USA, p.1–22.
[17]
Chen , B., Cheng , H.H., 2010. A review of the applications of agent technology in traffic and transportation systems. IEEE Trans. Intell. Transp. , 11(2):485–497. https://doi.org/10.1109/TITS.2010.2048313
[18]
Chen , B., Cheng , H.H., Palen , J., 2009. Integrating mobile agent technology with multi-agent systems for distributed traffic detection and management systems. Transp. Res. C-Emerg. , 17(1):1–10. https://doi.org/10.1016/j.trc.2008.04.003
[19]
Cucinotta , T., Mancina , A., Anastasi , G.F., , 2009. A real-time service-oriented architecture for industrial au-tomation. IEEE Trans. Ind. Inform. , 5(3):267–277. https://doi.org/10.1109/TII.2009.2027013
[20]
Curbera , F., Duftler , M., Khalaf , R., , 2002. Unraveling the web services web: an introduction to SOAP, WSDL, and UDDI. IEEE Internet Comput. , 6(2):86–93. https://doi.org/10.1109/4236.991449
[21]
Dillon , T.S., Zhuge , H., Wu , C., , 2011. Web-of-things framework for cyber-physical systems. Concurr. Comp.- Pract. E. , 23(9):905–923. https://doi.org/10.1002/cpe.1629
[22]
Dobrev , P., Famolari , D., Kurzke , C., , 2002. Device and service discovery in home networks with OSGi. IEEE Commun. Mag. , 40(8):86–92. https://doi.org/10.1109/MCOM.2002.1024420
[23]
Dubey , A., Karsai , G., Mahadevan , N., 2011. A component model for hard real-time systems: CCM with ARINC-653. Softw. Pract. Exper. , 41(12):1517–1550. https://doi.org/10.1002/spe.1083
[24]
Fang , X., Misra , S., Xue , G., , 2012. Smart grid—the new and improved power grid: a survey. IEEE Commun. Surv. Tutor. , 14(4):944–980. https://doi.org/10.1109/SURV.2011.101911.00087
[25]
Ferreira , P., Doltsinis , S., Anagnostopoulos , A., , 2013. A performance evaluation of industrial agents. Proc. 39th Annual Conf. of the IEEE Industrial Electronics Society, p.7404–7409. https://doi.org/10.1109/IECON.2013.6700365
[26]
Fouquet , F., Morin , B., Fleurey , F., , 2012. A dynamic component model for cyber physical systems. Proc. 15th ACM Sigsoft Symp. on Component Based Software En-gineering, p.135–144. https://doi.org/10.1145/2304736.2304759
[27]
Giordano , A., Spezzano , G., Vinci , A., 2016. A smart platform for large-scale cyber-physical systems.In: Guerrieri, A., Loscri, V., Rovella, A., et al.(Eds.), Management of Cyber Physical Objects in the Future Internet of Things. Springer International Publishing, Cham, Switzerland, p.115–134. https://doi.org/10.1007/978-3-319-26869-9_6
[28]
Greer , C., Wollman , D.A., Prochaska , D.E., , 2014. NIST framework and roadmap for smart grid interoperability standards, release 3.0. Specical Publication 1108r3, US National Institute of Standards and Technology, Gaithersburg, USA. https://doi.org/10.6028/NIST.SP.1108r3
[29]
GRID4EU, 2012. Specification and Requirements.http:// grid4eu.blob.core.windows.net/media-prod/6578/Grid4EU_dD1.1_Demo_1_V1.0.pdf [Accessed on Nov. 20, 2016].
[30]
Gunes , V., Peter , S., Givargis , T., , 2014. A survey on concepts, applications, and challenges in cyber-physical systems. KSII Trans. Internet Inform. Syst. , 8(12): 4242–4268. https://doi.org/10.3837/tiis.2014.12.001
[31]
Haque , S.A., Aziz , S.M., Rahman , M., 2014. Review of cyber-physical system in healthcare. Int. J. Distrib. Sens. Netw. , 2014:217415:1–217415:20. https://doi.org/10.1155/2014/217415
[32]
Hellbruck , H., Teubler , T., Fischer , S., 2013. Name-centric service architecture for cyber-physical systems. Proc. IEEE 6th Int. Conf. on Service-Oriented Computing and Applications, p.77–82. https://doi.org/10.1109/SOCA.2013.63
[33]
Hsieh , F.S., 2010. Design of reconfiguration mechanism for holonic manufacturing systems based on formal models. Eng. Appl. Artif. Intel. , 23(7):1187–1199. https://doi.org/10.1016/j.engappai.2010.05.008
[34]
Hu , F., Lu , Y., Vasilakos , A.V., , 2016. Robust cyber–physical systems: concept, models, and imple-mentation. Fut. Gener. Comp. Syst. , 56:449–475. https://doi.org/10.1016/j.future.2015.06.006
[35]
Huang , J., Bastani , F., Yen , I.L., , 2009a. Extending service model to build an effective service composition framework for cyber-physical systems. Proc. IEEE Int. Conf. on Service-Oriented Computing and Applications, p.1–8. https://doi.org/10.1109/SOCA.2009.5410453
[36]
Huang , J., Bastani , F., Yen , I.L., , 2009b. Toward a smart cyber-physical space: a context-sensitive resource- explicit service model. Proc. 33rd Annual IEEE Int. Computer Software and Applications Conf., p.122–127. https://doi.org/10.1109/COMPSAC.2009.125
[37]
Huang , J., Bastani , F.B., Yen , I.L., , 2010. A framework for efficient service composition in cyber-physical sys-tems. Proc. 5th IEEE Int. Symp. on Service Oriented System Engineering, p.291–298. https://doi.org/10.1109/SOSE.2010.46
[38]
Inam , R., Carlson , J., Sjödin , M., , 2014. Predictable integration and reuse of executable real-time components. J. Syst. Softw. , 91:147–162. https://doi.org/10.1016/j.jss.2013.12.040
[39]
Jammes , F., Mensch , A., Smit , H., 2005. Service-oriented device communications using the devices profile for web services. Proc. 3rd Int. Workshop on Middleware for Pervasive and Ad-Hoc Computing, p.1–8. https://doi.org/10.1145/1101480.1101496
[40]
Jia , D., Lu , K., Wang , J., , 2015. A survey on platoon- based vehicular cyber-physical systems. IEEE Commun. Surv. Tutor. , 18(1):263–284. https://doi.org/10.1109/COMST.2015.2410831
[41]
Jin , X., Chun , S., Jung , J., , 2014. IoT service selection based on physical service model and absolute dominance relationship. Proc. IEEE 7th Int. Conf. on Service- Oriented Computing and Applications, p.65–72. https://doi.org/10.1109/SOCA.2014.24
[42]
Karnouskos , S., Bangemann , T., Diedrich , C., 2009. Integra-tion of legacy devices in the future SOA-based factory. IFAC Proc. Vol. , 42(4):2113–2118. https://doi.org/10.3182/20090603-3-RU-2001.0487
[43]
Karnouskos , S., Colombo , A.W., Jammes , F., , 2010. Towards an architecture for service-oriented process monitoring and control. Proc. IECON 36th Annual Conf. on IEEE Industrial Electronics Society, p.1385–1391. https://doi.org/10.1109/IECON.2010.5675482
[44]
Khaitan , S.K., McCalley , J.D., 2015. Design techniques and applications of cyberphysical systems: a survey. IEEE Syst. J. , 9(2):350–365. https://doi.org/10.1109/JSYST.2014.2322503
[45]
Kim , M., Stehr , M.O., Kim , J., , 2013. An application framework for loosely coupled networked cyber-physical systems. Proc. IEEE/IFIP 8th Int. Conf. on Embedded and Ubiquitous Computing, p.144–153. https://doi.org/10.1109/EUC.2010.30
[46]
Lee , E.A., 2008. Cyber physical systems: design challenges. Proc. 11th IEEE Symp. on Object/Component/Service- Oriented Real-Time Distributed Computing, p.363–369. https://doi.org/10.1109/ISORC.2008.25
[47]
Leitão , P., 2013. Towards self-organized service-oriented multi-agent systems.In: Borangiu, T., Thomas, A., Trentesaux, D. (Eds.), Service Orientation in Holonic and Multi Agent Manufacturing and Robotics. Springer Ber-lin Heidelberg, p.41–56. https://doi.org/10.1007/978-3-642-35852-4_3
[48]
Leitão , P., Restivo , F., 2006. ADACOR: a holonic architecture for agile and adaptive manufacturing control. Comput. Ind. , 57(2):121–130. https://doi.org/10.1016/j.compind.2005.05.005
[49]
Leitão , P., Marik , V., Vrba , P., 2013. Past, present, and future of industrial agent applications. IEEE Trans. Ind. Inform. , 9(4):2360–2372. https://doi.org/10.1109/TII.2012.2222034
[50]
Lepuschitz , W., Vallee , M., Merdan , M., , 2009. Integra-tion of a heterogeneous low level control in a multi-agent system for the manufacturing domain. Proc. 14th IEEE Int. Conf. on Emerging Technologies Factory Automa-tion, p.574–581. https://doi.org/10.1109/ETFA.2009.5347061
[51]
Levendovszky , T., Dubey , A., Otte , W.R., , 2014. Dis-tributed real-time managed systems: a model-driven dis-tributed secure information architecture platform for managed embedded systems. IEEE Softw. , 31(2):62–69. https://doi.org/10.1109/MS.2013.143
[52]
Li , F., Xu , J., Yu , G., 2012. A survey on event processing for CPS.In: Wang, R., Xiao, F. (Eds.), Advances in Wireless Sensor Networks. Springer Berlin Heidelberg, p.157–166. https://doi.org/10.1007/978-3-642-36252-1_15
[53]
Li , Q., Qin , W., Han , B., , 2011. A case study on rest-style architecture for cyber-physical systems: restful smart gateway. Comput. Sci. Inform. Syst. , 8(4):1317–1329. https://doi.org/10.2298/CSIS110310062L
[54]
Li , R.F., Xie , Y., Li , R., , 2012. Survey of cyber-physical systems. J. Comput. Res. Dev. , 49(6):1149–1161 (in Chinese).
[55]
Lin , J., Sedigh , S., Miller , A., 2011. A semantic agent framework for cyber-physical systems.In: Elçi, A., Koné, M.T., Orgun, M.A. (Eds.), Semantic Agent Systems. Springer Berlin Heidelberg, p.189–213. https://doi.org/10.1007/978-3-642-18308-9_9
[56]
Lopez , P., Medina , J.L., Drake , J.M., 2006. Real-time model-ling of distributed component-based applications. Proc. 32nd EUROMICRO Conf. on Software Engineering and Advanced Applications, p.92–99. https://doi.org/10.1109/EUROMICRO.2006.52
[57]
Macana , C.A., Quijano , N., Mojica-Nava , E., 2011. A survey on cyber physical energy systems and their applications on smart grids. Proc. IEEE PES Conf. on Innovative Smart Grid Technologies, p.1–7. https://doi.org/10.1109/ISGT-LA.2011.6083194
[58]
Martin , D., Paolucci , M., McIlraith , S., , 2005. Bringing semantics to web services: the OWL-S approach.In: Cardoso, J., Sheth, A. (Eds.), Semantic Web Services and Web Process Composition. Springer-Verlag Berlin Hei-delberg, p.26–42. https://doi.org/10.1007/978-3-540-30581-1_4
[59]
Martínez , P.L., Cuevas , C., Drake , J.M., 2010. RT-D&C: deployment specification of real-time component-based applications. Proc. 36th EUROMICRO Conf. on Soft-ware Engineering and Advanced Applications, p.147–155. https://doi.org/10.1109/SEAA.2010.22
[60]
Martínez , P.L., Barros , L., Drake , J.M., 2013. Design of component-based real-time applications. J. Syst. Softw. , 86(2):449–467. https://doi.org/10.1016/j.jss.2012.09.036
[61]
Mendes , J.M., Leitão , P., Restivo , F., , 2009. Service- oriented agents for collaborative industrial automation and production systems.In: Mařík, V., Strasser, T., Zoitl, A. (Eds.), Holonic and Multi-agent Systems for Manu-facturing. Springer-Verlag Berlin Heidelberg, p.13–24. https://doi.org/10.1007/978-3-642-03668-2_2
[62]
Mendes , J.M., Leitão , P., Restivo , F., , 2010. Composition of Petri nets models in service-oriented industrial auto-mation. Proc. 8th IEEE Int. Conf. on Industrial Infor-matics, p.578–583. https://doi.org/10.1109/INDIN.2010.5549677
[63]
Microsoft, 2015. Smart Energy Reference Architecture Version 2.0.https://msenterprise.global.ssl.fastly.net/wordpress/ Reference_Architecture_pdf_whitepaper_2.pdf [Accessed on Nov. 20, 2016].
[64]
Miller , B.A., Nixon , T., Tai , C., , 2001. Home networking with universal plug and play. IEEE Commun. Mag. , 39(12):104–109. https://doi.org/10.1109/35.968819
[65]
Monostori , L., Kadar , B., Bauernhansl , T., , 2016. Cyber-physical systems in manufacturing. CIRP Ann. Manuf. Techn. , 65(2):621–641. https://doi.org/10.1016/j.cirp.2016.06.005
[66]
Morin , B., Barais , O., Nain , G., , 2009. Taming dynami-cally adaptive systems using models and aspects. Proc. 31st Int. Conf. on Software Engineering, p.122–132. https://doi.org/10.1109/ICSE.2009.5070514
[67]
Muccini , H., Sharaf , M., Weyns , D., 2016. Self-adaptation for cyber-physical systems: a systematic literature review. Proc. 11th Int. Workshop on Software Engineering for Adaptive and Self-Managing Systems, p.75–81. https://doi.org/10.1145/2897053.2897069
[68]
Ni , Z., Kobetski , A., Axelsson , J., 2014. Design and imple-mentation of a dynamic component model for federated AUTOSAR systems. Proc. 51st Annual Design Automa-tion Conf., p.94:1–94:6. https://doi.org/10.1145/2593069.2593121
[69]
Nikam , S., Ingle , R., 2014. Resource provisioning algorithms for service composition in Cyber Physical Systems. Proc. Int. Conf. on Advances in Computing, Communications and Informatics, p.2797–2802. https://doi.org/10.1109/ICACCI.2014.6968650
[70]
Obermaisser , R., Huber , B., 2009. The GENESYS architecture: a conceptual model for component-based distributed real-time systems.In: Lee, S., Narasimhan, P. (Eds.), Software Technologies for Embedded and Ubiquitous Systems. Springer-Verlag Berlin Heidelberg, p.296–307. https://doi.org/10.1007/978-3-642-10265-3_27
[71]
Otte , W.R., Dubey , A., Karsai , G., 2014. A resilient and secure software platform and architecture for distributed space-craft. SPIE, 9085:90850J. https://doi.org/10.1117/12.2054055
[72]
Pajic , M., Chernoguzov , A., Mangharam , R., 2012. Robust architectures for embedded wireless network control and actuation. ACM Trans. Embed. Comput. Syst. , 11(4):82. https://doi.org/10.1145/2362336.2362349
[73]
Papazoglou , M.P., Heuvel , W.J., 2007. Service oriented ar-chitectures: approaches, technologies and research issues. VLDB J. , 16(3):389–415. https://doi.org/10.1007/s00778-007-0044-3
[74]
Park , S.O., Do , T.H., Jeong , Y.S., , 2013. A dynamic control middleware for cyber physical systems on an IPv6-based global network. Int. J. Commun. Syst. , 26(6): 690–704. https://doi.org/10.1002/dac.1382
[75]
Parvin , S., Hussain , F.K., Hussain , O.K., , 2013. Multi- cyber framework for availability enhancement of cyber physical systems. Computing, 95(10-11):927–948. https://doi.org/10.1007/s00607-012-0227-7
[76]
Pradhan , S., Otte , W.R., Dubey , A., , 2014. Towards a resilient deployment and configuration infrastructure for fractionated spacecraft. ACM SIGBED Rev. , 10(4):29–32. https://doi.org/10.1145/2583687.2583694
[77]
Puttonen , J., Lobov , A., Lastra , J.L.M., 2008. An application of BPEL for service orchestration in an industrial envi-ronment. Proc. 13th IEEE Int. Conf. on Emerging Tech-nologies and Factory Automation, p.530–537. https://doi.org/10.1109/ETFA.2008.4638450
[78]
Rajkumar , R., Lee , I., Sha , L., , 2010. Cyber-physical systems: the next computing revolution. Proc. 47th ACM/IEEE Design Automation Conf., p.731–736. https://doi.org/10.1145/1837274.1837461
[79]
Schirner , G., Erdogmus , D., Chowdhury , K., , 2013. The future of human-in-the-loop cyber-physical systems. Computer, 46(1):36–45. https://doi.org/10.1109/MC.2013.31
[80]
Seow , K.T., Dang , N.H., Lee , D.H., 2010. A collaborative multiagent taxi-dispatch system. IEEE Trans. Autom. Sci. Eng. , 7(3):607–616. https://doi.org/10.1109/TASE.2009.2028577
[81]
Sha , L., Gopalakrishnan , S., Liu , X., , 2008. Cyber- physical systems: a new frontier. Proc. IEEE Int. Conf. on Sensor Networks, Ubiquitous and Trustworthy Compu-ting, p.1–9. https://doi.org/10.1109/SUTC.2008.85
[82]
Shi , J., Wan , J., Yan , H., , 2011. A survey of cyber-physical systems. Proc. Int. Conf. on Wireless Communications and Signal Processing, p.1–6. https://doi.org/10.1109/WCSP.2011.6096958
[83]
SMB Smart Grid Strategic Group, 2010. IEC Smart Grid Standardization Roadmap.http://www.iec.ch/smartgrid/ downloads/sg3_roadmap.pdf [Accessed on Nov. 20, 2016].
[84]
Soulier , P., Li , D., Williams , J.R., 2015. A survey of language-based approaches to Cyber-Physical and em-bedded system development. Tsinghua Sci. Technol. , 20(2):130–141. https://doi.org/10.1109/TST.2015.7085626
[85]
Srbljic , S., Skvorc , D., Popovic , M., 2012. Programming lan-guages for end-user personalization of cyber-physical systems. Automatika, 53(3):294–310. https://doi.org/10.7305/automatika.53-3.84
[86]
Stojmenovic , I., 2014. Machine-to-machine communications with in-network data aggregation, processing, and actua-tion for large-scale cyber-physical systems. IEEE IOT J. , 1(2):122–128. https://doi.org/10.1109/JIOT.2014.2311693
[87]
Tan , Y., Vuran , M.C., Goddard , S., 2009. Spatio-temporal event model for cyber-physical systems. Proc. 29th IEEE Int. Conf. on Distributed Computing Systems Workshops, p.44–50. https://doi.org/10.1109/ICDCSW.2009.82
[88]
Valls , M.G., Lopez , I.R., Villar , L.F., 2013. iLand: an en-hanced middleware for real-time reconfiguration of ser-vice oriented distributed real-time systems. IEEE Trans. Ind. Inform. , 9(1):228–236. https://doi.org/10.1109/TII.2012.2198662
[89]
Vegh , L., Miclea , L., 2016. Secure and efficient communica-tion in cyber-physical systems through cryptography and complex event processing. Proc. Int. Conf. on Commu-nications, p.273–276. https://doi.org/10.1109/ICComm.2016.7528290
[90]
Vicaire , P.A., Xie , Z., Hoque , E., , 2010. Physicalnet: a generic framework for managing and programming across pervasive computing networks. Proc. 16th IEEE Real-Time and Embedded Technology and Applications Symp., p.269–278. https://doi.org/10.1109/RTAS.2010.17
[91]
Vicaire , P.A., Hoque , E., Xie , Z., , 2012. Bundle: a group-based programming abstraction for cyber-physical systems. IEEE Trans. Ind. Inform. , 8(2):379–392. https://doi.org/10.1109/TII.2011.2166772
[92]
Vrba , P., Radakovič , M., Obitko , M., , 2011a. Semantic technologies: latest advances in agent-based manufac-turing control systems. Int. J. Prod. Res. , 49(5):1483–1496. https://doi.org/10.1080/00207543.2010.518746
[93]
Vrba , P., Tichý , P., Mařík , V., , 2011b. Rockwell auto-mation’s holonic and multiagent control systems com-pendium. IEEE Trans. Syst. Man Cybern. C, 41(1):14–30. https://doi.org/10.1109/TSMCC.2010.2055852
[94]
Vrba , P., Mařík , V., Siano , P., , 2014. A review of agent and service-oriented concepts applied to intelligent energy systems. IEEE Trans. Ind. Inform. , 10(3):1890–1903. https://doi.org/10.1109/TII.2014.2326411
[95]
Wan , J., Yan , H., Suo , H., , 2011. Advances in cyber-physical systems research. KSII Trans. Internet Inform. , 5(11):1891–1908. https://doi.org/10.3837/tiis.2011.11.001
[96]
Wan , K., Alagar , V., Dong , Y., 2014. Specifying resource- centric services in cyber physical systems.In: Yang, G.C., Ao, S.I., Huang, X., et al.(Eds.), Transactions on Engi-neering Technologies. Springer Netherlands, Dordrecht, the Netherland, p.83–97. https://doi.org/10.1007/978-94-007-7684-5_7
[97]
Wang , F.Y., 2008. Toward a revolution in transportation op-erations: AI for complex systems. IEEE Intell. Syst. , 23(6): 8–13. https://doi.org/10.1109/MIS.2008.112
[98]
Wang , T., Cheng , L., Zheng , K., 2012. Automatic and effec-tive service provision with context-aware service com-position mechanism in cyber-physical systems. Adv. In-form. Sci. Serv. Sci. , 4(11):151–160. https://doi.org/10.4156/AISS.vol4.issue11.18
[99]
Wang , Z.J., Xie , L.L., 2011. Cyber-physical systems: a survey. Acta Autom. Sin. , 37(10):1157–1166 (in Chinese).
[100]
Woo , H., Yi , J., Browne , J.C., , 2008. Design and de-velopment methodology for resilient cyber-physical sys-tems. Proc. 28th Int. Conf. on Distributed Computing Systems Workshops, p.525–528. https://doi.org/10.1109/ICDCS.Workshops.2008.62
[101]
Wu , G., Sun , J., Chen , J., 2016. A survey on the security of cyber-physical systems. J. Contr. Theory Technol. , 14(1):2–10. https://doi.org/10.1007/s11768-016-5123-9
[102]
Wu , L., Kaiser , G., 2012. An autonomic reliability improve-ment system for cyber-physical systems. Proc. IEEE 14th Int. Symp. on High-Assurance Systems Engineering, p.56–61. https://doi.org/10.1109/HASE.2012.33
[103]
Xiao , K., Ren , S., Kwiat , K., 2008. Retrofitting cyber physical systems for survivability through external coordination. Proc. 41st Annual Hawaii Int. Conf. on System Sciences, p.465–465. https://doi.org/10.1109/HICSS.2008.377
[104]
Zhao , C., Dong , W., Qi , Z., 2010. Active monitoring for con-trol systems under anticipatory semantics. Proc. 10th Int. Conf. on Quality Software, p.318–325. https://doi.org/10.1109/QSIC.2010.82
[105]
Zhou , X.S., Yang , Y.L., Yang , G., 2014. Modeling methods for dynamic behaviors of cyber-physical system. Chin. J. Comp.37(6):1411–1423 (in Chinese).
[106]
Zhu , W., Zhou , G., Yen , I.L., , 2015. A PT-SOA model for CPS/IoT services. Proc. IEEE Int. Conf. on Web Services, p.647–654. https://doi.org/10.1109/ICWS.2015.91

RIGHTS & PERMISSIONS

2017 Zhejiang University and Springer-Verlag GmbH Germany
PDF(715 KB)

Accesses

Citations

Detail

Sections
Recommended

/